Ozone is an oxidating gas showing a strong microbicidal activity on bacteria, fungi, viruses and protozoa. The aim of this study was to test the in vitro bacteriocidal action of an Ozone/Oxygen gas mixture on bacteria isolated from the cervico-vaginal mucus of cows affected by acute metritis. A pilot study was initially carried out on reference strains (Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Mycoplasma bovigenitalium ATCC 19852) that were tested with three different treatments: a control positive baseline group (B-group) was incubated without gas treatment, a control positive oxygen group (O2-group) was treated with pure oxygen 100%, and the treated group (T-group) was exposed to a gaseous constant flow of an Ozone/Oxygen mixture, at 50, 35, 20 μg Ozone/ml and for 5, 3 and 1 min for every different Ozone concentration. In both positive control groups, the number of colony forming units (CFU) per ml was higher than 300 CFU/ml (E. coli and S. aureus) and higher than 30 CFU/ml for M. bovigenitalium, after incubation. The T-groups showed a minimal bacterial growth equal to or lower than 1 CFU/ml per plate. Based on the results of the pilot study, a second phase was performed on bacteria isolated from the cervico-vaginal mucus (Klebsiella pneumoniae, Enterobacter agglomerans, E. coli, Proteus mirabilis and M. bovigenitalium) using the lower concentration of 20 μg/ml of Ozone for the minimum exposure time of 1 min. The E. coli and S. aureus reference strains and the clinical isolates (K. pneumoniae, E. agglomerans, E. coli, P. mirabilis) were incubated at 37 °C for 48 h and the colonies were manually counted at 24 h and 48 h following inoculation. The cultures of M. bovigenitalium (both ATCC and clinical isolate) were incubated in a jar with modified atmosphere conditions with 5% CO2 at 37 °C for 4–7 days and colony counting was performed. The second phase showed a low number of CFUs (equal to or less than 7 CFU/ml) for the clinical isolates K. pneumoniae, E. agglomerans, E. coli and P. mirabilis, and, of note, for M. bovigenitalium, both ATCC and clinical isolate, the growth was completely inhibited. Ozone was demonstrated to have a bacteriocidal activity. This study encourages further research of in vivo application of low doses of gaseous Ozone for the treatment of metritis in cows by using minimal exposure times.

Evaluation of antibacterial oxygen/ozone mixture in vitro activity on bacteria isolated from cervico-vaginal mucus of cows with acute metritis

Lillo, Edoardo;Cordisco, Marco;Trotta, Adriana;Greco, Grazia
Writing – Original Draft Preparation
;
Carbonari, Alice;Rizzo, Annalisa;Sciorsci, Raffaele Luigi
;
Corrente, Marialaura
2022-01-01

Abstract

Ozone is an oxidating gas showing a strong microbicidal activity on bacteria, fungi, viruses and protozoa. The aim of this study was to test the in vitro bacteriocidal action of an Ozone/Oxygen gas mixture on bacteria isolated from the cervico-vaginal mucus of cows affected by acute metritis. A pilot study was initially carried out on reference strains (Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Mycoplasma bovigenitalium ATCC 19852) that were tested with three different treatments: a control positive baseline group (B-group) was incubated without gas treatment, a control positive oxygen group (O2-group) was treated with pure oxygen 100%, and the treated group (T-group) was exposed to a gaseous constant flow of an Ozone/Oxygen mixture, at 50, 35, 20 μg Ozone/ml and for 5, 3 and 1 min for every different Ozone concentration. In both positive control groups, the number of colony forming units (CFU) per ml was higher than 300 CFU/ml (E. coli and S. aureus) and higher than 30 CFU/ml for M. bovigenitalium, after incubation. The T-groups showed a minimal bacterial growth equal to or lower than 1 CFU/ml per plate. Based on the results of the pilot study, a second phase was performed on bacteria isolated from the cervico-vaginal mucus (Klebsiella pneumoniae, Enterobacter agglomerans, E. coli, Proteus mirabilis and M. bovigenitalium) using the lower concentration of 20 μg/ml of Ozone for the minimum exposure time of 1 min. The E. coli and S. aureus reference strains and the clinical isolates (K. pneumoniae, E. agglomerans, E. coli, P. mirabilis) were incubated at 37 °C for 48 h and the colonies were manually counted at 24 h and 48 h following inoculation. The cultures of M. bovigenitalium (both ATCC and clinical isolate) were incubated in a jar with modified atmosphere conditions with 5% CO2 at 37 °C for 4–7 days and colony counting was performed. The second phase showed a low number of CFUs (equal to or less than 7 CFU/ml) for the clinical isolates K. pneumoniae, E. agglomerans, E. coli and P. mirabilis, and, of note, for M. bovigenitalium, both ATCC and clinical isolate, the growth was completely inhibited. Ozone was demonstrated to have a bacteriocidal activity. This study encourages further research of in vivo application of low doses of gaseous Ozone for the treatment of metritis in cows by using minimal exposure times.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/412230
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact