In the present contribution we develop a sharper error analysis for the Virtual Element Method, applied to a model elliptic problem, that separates the element boundary and element interior contributions to the error. As a consequence we are able to propose a variant of the scheme that allows one to take advantage of polygons with many edges (such as those composing Voronoi meshes or generated by agglomeration procedures) in order to yield a more accurate discrete solution. The theoretical results are supported by numerical experiments.

Sharper Error Estimates for Virtual Elements and a Bubble-Enriched Version

Vacca, G.
2022-01-01

Abstract

In the present contribution we develop a sharper error analysis for the Virtual Element Method, applied to a model elliptic problem, that separates the element boundary and element interior contributions to the error. As a consequence we are able to propose a variant of the scheme that allows one to take advantage of polygons with many edges (such as those composing Voronoi meshes or generated by agglomeration procedures) in order to yield a more accurate discrete solution. The theoretical results are supported by numerical experiments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/411991
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact