The Calibration-free inverse method (CF-IM) is a variant of the classical CF approach that can be used for the determination of the plasma temperature using a single calibration standard. In this work, the IM was suitably modified in order to test its applicability to the depth-resolved elemental analyses of stratified samples. The single calibration standard was used as a sort of reference sample to model the acquisition conditions of the spectra, to investigate the effect of the acquisition geometry, and to account for possible crater-induced changes in the acquired spectra and plasma parameters. Thus, a depth profile of the standard sample was performed in order to obtain a plasma temperature profile, which in turn was employed, together with the experimental electron density profile, for the depth profile calibration-free analysis. The methodology was also applied to archaeological samples, with the purpose of testing the method with weathered and layered samples, and compared with the results of classical LIBS with calibration lines.
Calibration-free inverse method for depth-profile analysis with laser-induced breakdown spectroscopy
Gaudiuso R.
2016-01-01
Abstract
The Calibration-free inverse method (CF-IM) is a variant of the classical CF approach that can be used for the determination of the plasma temperature using a single calibration standard. In this work, the IM was suitably modified in order to test its applicability to the depth-resolved elemental analyses of stratified samples. The single calibration standard was used as a sort of reference sample to model the acquisition conditions of the spectra, to investigate the effect of the acquisition geometry, and to account for possible crater-induced changes in the acquired spectra and plasma parameters. Thus, a depth profile of the standard sample was performed in order to obtain a plasma temperature profile, which in turn was employed, together with the experimental electron density profile, for the depth profile calibration-free analysis. The methodology was also applied to archaeological samples, with the purpose of testing the method with weathered and layered samples, and compared with the results of classical LIBS with calibration lines.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.