In the amphibian urinary bladder, the increase in water permeability induced by antidiuretic hormone (ADH) is accompanied by the appearance of apical intramembrane particle (IMP) aggregates that are believed to contain specific channels for water. In a previous work, we have shown that 3,3'-diallyldiethylstilbestrol (DADES), a synthetic estrogen which is a blocker of the glucose transporter, also inhibits the hydrosmotic response to ADH in the bladder. Our aim in the present study was to analyze the alterations of the membrane fine structure further and to correlate them with the water permeability changes. The results point to a selective inhibition of the ADH-induced net water flow, probably due to an interference with one of the last steps of the response to the hormone. This inhibition is associated with an increase in the density of the apical IMP aggregates, which are thus probably not operational. The resting net water flow is not inhibited and, surprisingly, typical IMP aggregates are frequently observed in the apical membrane after DADES treatment. The compound also induces the appearance of unusual loose IMP clusters that can only be seen on the apical membrane of the granular cells and that share several ultrastructural similarities with the ADH-induced aggregates. These results suggest that 1) apical DADES treatment stimulates the insertion of IMP aggregates in the apical membrane of the urinary bladder and 2) DADES inhibits the ADH-induced water flow by interfering with the aggregates and thus probably by blocking the specific water channels.

ADH-induced water permeability and particle aggregates: alteration by a synthetic estrogen

CALAMITA, Giuseppe;
1991

Abstract

In the amphibian urinary bladder, the increase in water permeability induced by antidiuretic hormone (ADH) is accompanied by the appearance of apical intramembrane particle (IMP) aggregates that are believed to contain specific channels for water. In a previous work, we have shown that 3,3'-diallyldiethylstilbestrol (DADES), a synthetic estrogen which is a blocker of the glucose transporter, also inhibits the hydrosmotic response to ADH in the bladder. Our aim in the present study was to analyze the alterations of the membrane fine structure further and to correlate them with the water permeability changes. The results point to a selective inhibition of the ADH-induced net water flow, probably due to an interference with one of the last steps of the response to the hormone. This inhibition is associated with an increase in the density of the apical IMP aggregates, which are thus probably not operational. The resting net water flow is not inhibited and, surprisingly, typical IMP aggregates are frequently observed in the apical membrane after DADES treatment. The compound also induces the appearance of unusual loose IMP clusters that can only be seen on the apical membrane of the granular cells and that share several ultrastructural similarities with the ADH-induced aggregates. These results suggest that 1) apical DADES treatment stimulates the insertion of IMP aggregates in the apical membrane of the urinary bladder and 2) DADES inhibits the ADH-induced water flow by interfering with the aggregates and thus probably by blocking the specific water channels.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/41128
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 6
social impact