Carbon dots (CDs) are novel fluorescent nanoparticles that combine intense emission of visible light with eco-friendly and inexpensive carbon-based composition. In this work, CDs are synthesized trough a glycothermal treatment of resorcinol (1,3-hydroxybenzene) in air atmosphere. The presence of catalysts (NaOH and H2SO4) increases the reaction rate, promoting a faster and massive production of nanoparticles. The spectroscopic monitoring of fluorescence during CD synthesis, supported by a DFT study, allows to depict the formation and structural evolution of OH terminated polycyclic aromatic hydrocarbons (PAHs) from resorcinol polycondensation. In purified CDs, PAHs embedded in the amorphous carbogenic core are responsible for an intense green fluorescence emission with a quantum yield up to similar to 40%. Such band exhibits high resistance to UV photobleaching, attributed to the physical protection of the carbogenic matrix. Finally, adding a strong acid/base to the CD solution, the CD fluorescence can be cyclically quenched/restored (due to reversible aggregation), suggesting the convenient use of such CDs in on/off sensors or stimulus-responding devices.

Photostable carbon dots with intense green emission in an open reactor synthesis

A. Panniello;T. Sibillano;C. Giannini;C. Ingrosso;N. Depalo;E. Fanizza;M. L. Curri;
2022-01-01

Abstract

Carbon dots (CDs) are novel fluorescent nanoparticles that combine intense emission of visible light with eco-friendly and inexpensive carbon-based composition. In this work, CDs are synthesized trough a glycothermal treatment of resorcinol (1,3-hydroxybenzene) in air atmosphere. The presence of catalysts (NaOH and H2SO4) increases the reaction rate, promoting a faster and massive production of nanoparticles. The spectroscopic monitoring of fluorescence during CD synthesis, supported by a DFT study, allows to depict the formation and structural evolution of OH terminated polycyclic aromatic hydrocarbons (PAHs) from resorcinol polycondensation. In purified CDs, PAHs embedded in the amorphous carbogenic core are responsible for an intense green fluorescence emission with a quantum yield up to similar to 40%. Such band exhibits high resistance to UV photobleaching, attributed to the physical protection of the carbogenic matrix. Finally, adding a strong acid/base to the CD solution, the CD fluorescence can be cyclically quenched/restored (due to reversible aggregation), suggesting the convenient use of such CDs in on/off sensors or stimulus-responding devices.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/409694
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact