Conformal inclusions of chiral conformal field theories, or more generally inclusions of quantum field theories, are described in the von Neumann algebraic setting by nets of subfactors, possibly with infinite Jones index if one takes non-rational theories into account. With this situation in mind, we study in a purely subfactor theoretical context a certain class of braided discrete subfactors with an additional commutativity constraint, that we call locality, and which corresponds to the commutation relations between field operators at space-like distance in quantum field theory. Examples of subfactors of this type come from taking a minimal action of a compact group on a factor and considering the fixed point subalgebra. We show that to every irreducible local discrete subfactor N⊂M of type III there is an associated canonical compact hypergroup (an invariant for the subfactor) which acts on M by unital completely positive (ucp) maps and which gives N as fixed points. To show this, we establish a duality pairing between the set of all N-bimodular ucp maps on M and a certain commutative unital C⁎-algebra, whose spectrum we identify with the compact hypergroup. If the subfactor has depth 2, the compact hypergroup turns out to be a compact group. This rules out the occurrence of compact quantum groups acting as global gauge symmetries in local conformal field theory.

Compact hypergroups from discrete subfactors

Del Vecchio S.;
2021-01-01

Abstract

Conformal inclusions of chiral conformal field theories, or more generally inclusions of quantum field theories, are described in the von Neumann algebraic setting by nets of subfactors, possibly with infinite Jones index if one takes non-rational theories into account. With this situation in mind, we study in a purely subfactor theoretical context a certain class of braided discrete subfactors with an additional commutativity constraint, that we call locality, and which corresponds to the commutation relations between field operators at space-like distance in quantum field theory. Examples of subfactors of this type come from taking a minimal action of a compact group on a factor and considering the fixed point subalgebra. We show that to every irreducible local discrete subfactor N⊂M of type III there is an associated canonical compact hypergroup (an invariant for the subfactor) which acts on M by unital completely positive (ucp) maps and which gives N as fixed points. To show this, we establish a duality pairing between the set of all N-bimodular ucp maps on M and a certain commutative unital C⁎-algebra, whose spectrum we identify with the compact hypergroup. If the subfactor has depth 2, the compact hypergroup turns out to be a compact group. This rules out the occurrence of compact quantum groups acting as global gauge symmetries in local conformal field theory.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022123621000860-main.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2007.12384-2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 798.08 kB
Formato Adobe PDF
798.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/409054
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact