In this work we prove a Brunella–Khanedani–Suwa variational type residue theorem for currents invariant by holomorphic foliations. As a consequence, we provide conditions for the accumulation of the leaves to the intersection of the singular set of a holomorphic foliation with the support of an invariant current.

Brunella–khanedani–suwa variational residues for invariant currents

Correa Barros Mauricio;
2021-01-01

Abstract

In this work we prove a Brunella–Khanedani–Suwa variational type residue theorem for currents invariant by holomorphic foliations. As a consequence, we provide conditions for the accumulation of the leaves to the intersection of the singular set of a holomorphic foliation with the support of an invariant current.
File in questo prodotto:
File Dimensione Formato  
BRUNELLa–KHANEDANI–SUWA.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 237.53 kB
Formato Adobe PDF
237.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1802.09093v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 137.13 kB
Formato Adobe PDF
137.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/408476
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact