We prove a Gauss-Bonnet and Poincaré -Hopf type theorem for complex მ-manifold X̃ = X - D, where X is a complex compact manifold and D is a reduced divisor. We will consider the cases such that D has isolated singularities and also if D has a (not necessarily irreducible) decomposition D = D1 ꓴD2 such that D1, D2 have isolated singularities and C = D1 ꓵD2 is a codimension 2 variety with isolated singularities.

On gauss-bonnet and poincarÉ -hopf type theorems for complex მ-manifolds

Barros Correa Mauricio
;
2021-01-01

Abstract

We prove a Gauss-Bonnet and Poincaré -Hopf type theorem for complex მ-manifold X̃ = X - D, where X is a complex compact manifold and D is a reduced divisor. We will consider the cases such that D has isolated singularities and also if D has a (not necessarily irreducible) decomposition D = D1 ꓴD2 such that D1, D2 have isolated singularities and C = D1 ꓵD2 is a codimension 2 variety with isolated singularities.
File in questo prodotto:
File Dimensione Formato  
ON GAUSS–BONNET AND POINCARE–HOPF TYPE.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 425.87 kB
Formato Adobe PDF
425.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
GB.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 194.28 kB
Formato Adobe PDF
194.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/408472
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact