We prove a Gauss-Bonnet and Poincaré -Hopf type theorem for complex მ-manifold X̃ = X - D, where X is a complex compact manifold and D is a reduced divisor. We will consider the cases such that D has isolated singularities and also if D has a (not necessarily irreducible) decomposition D = D1 ꓴD2 such that D1, D2 have isolated singularities and C = D1 ꓵD2 is a codimension 2 variety with isolated singularities.
On gauss-bonnet and poincarÉ -hopf type theorems for complex მ-manifolds
Barros Correa Mauricio
;
2021-01-01
Abstract
We prove a Gauss-Bonnet and Poincaré -Hopf type theorem for complex მ-manifold X̃ = X - D, where X is a complex compact manifold and D is a reduced divisor. We will consider the cases such that D has isolated singularities and also if D has a (not necessarily irreducible) decomposition D = D1 ꓴD2 such that D1, D2 have isolated singularities and C = D1 ꓵD2 is a codimension 2 variety with isolated singularities.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
ON GAUSS–BONNET AND POINCARE–HOPF TYPE.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
425.87 kB
Formato
Adobe PDF
|
425.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
GB.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
194.28 kB
Formato
Adobe PDF
|
194.28 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


