Let X be a smooth projective variety. We show that the map that sends a codimension one distribution on X to its singular scheme is a morphism from the moduli space of distributions into a Hilbert scheme. We describe its fibers and, when X= Pn, compute them via syzygies. As an application, we describe the moduli spaces of degree 1 distributions on P3. We also give the minimal graded free resolution for the ideal of the singular scheme of a generic distribution on P3.
Moduli of distributions via singular schemes
Barros Correa Junior Mauricio;
2022-01-01
Abstract
Let X be a smooth projective variety. We show that the map that sends a codimension one distribution on X to its singular scheme is a morphism from the moduli space of distributions into a Hilbert scheme. We describe its fibers and, when X= Pn, compute them via syzygies. As an application, we describe the moduli spaces of degree 1 distributions on P3. We also give the minimal graded free resolution for the ideal of the singular scheme of a generic distribution on P3.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
s00209-022-03001-y.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
331.33 kB
Formato
Adobe PDF
|
331.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
2010.02382v2.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
331.12 kB
Formato
Adobe PDF
|
331.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


