The new, sterically encumbered phenanthroline ligands 1a,b, both characterized by the presence of bulky aryl substituents (3,5-di-tert-butyl-4- methoxyphenyl, 2,4,6-trimethylphenyl) in the 2,9-position, were prepared along with their homoleptic [Cu(1a,b)2]+ and heteroleptic complexes [Cu(1a,b)(phen)]+ (phen = parent 1,10-phenanthroline). Due to the pronounced steric shielding, particularly effective in ligand 1a, the formation of the homoleptic complex [Cu(1a)2]+ becomes very slow (5 days). Once formed, the homoleptic complexes [Cu(1a,b) 2]+ do not exchange ligands even with phen added in excess because they are kinetically locked due to the large tert-butylphenyl substituents at the phenanthroline unit. The electronic absorption spectra of the homoleptic complexes [Cu(1a)2]+ and [Cu(1b) 2]+ evidence a strongly different ground state geometry of the two compounds, the former being substantially more distorted. This trend is also observed in the excited-state geometry, as derived by emission spectra and lifetimes in CH2Cl2 solution. The less distorted [Cu(1b)2]+, compared to [Cu(1a)2]+, is characterized by a 15- and over 100-fold stronger emission at 298 and 77 K, respectively. Noticeably, the excited-state lifetime of [Cu(1a) 2]+ in solution is unaffected by the presence of molecular oxygen and only slightly shortened in nucleophilic solvents. This unusual behavior supports the idea of a complex characterized by a "locked" coordination environment. © 2006 American Chemical Society.

Novel phenanthroline ligands and their kinetically locked copper(I) complexes with unexpected photophysical properties

Andrea Listorti;
2006-01-01

Abstract

The new, sterically encumbered phenanthroline ligands 1a,b, both characterized by the presence of bulky aryl substituents (3,5-di-tert-butyl-4- methoxyphenyl, 2,4,6-trimethylphenyl) in the 2,9-position, were prepared along with their homoleptic [Cu(1a,b)2]+ and heteroleptic complexes [Cu(1a,b)(phen)]+ (phen = parent 1,10-phenanthroline). Due to the pronounced steric shielding, particularly effective in ligand 1a, the formation of the homoleptic complex [Cu(1a)2]+ becomes very slow (5 days). Once formed, the homoleptic complexes [Cu(1a,b) 2]+ do not exchange ligands even with phen added in excess because they are kinetically locked due to the large tert-butylphenyl substituents at the phenanthroline unit. The electronic absorption spectra of the homoleptic complexes [Cu(1a)2]+ and [Cu(1b) 2]+ evidence a strongly different ground state geometry of the two compounds, the former being substantially more distorted. This trend is also observed in the excited-state geometry, as derived by emission spectra and lifetimes in CH2Cl2 solution. The less distorted [Cu(1b)2]+, compared to [Cu(1a)2]+, is characterized by a 15- and over 100-fold stronger emission at 298 and 77 K, respectively. Noticeably, the excited-state lifetime of [Cu(1a) 2]+ in solution is unaffected by the presence of molecular oxygen and only slightly shortened in nucleophilic solvents. This unusual behavior supports the idea of a complex characterized by a "locked" coordination environment. © 2006 American Chemical Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/406234
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 124
  • ???jsp.display-item.citation.isi??? 114
social impact