The synthesis, electrochemical, and photophysical properties of five multicomponent systems featuring a ZnII porphyrin (ZnP) linked to one or two anilino donor-substituted pentacyano- (PCBD) or tetracyanobuta-1,3- dienes (TCBD), with and without an interchromophoric bridging spacer (S), are reported: ZnP-S-PCBD (1), ZnP-S-TCBD (2), ZnP-TCBD (3), ZnP-(S-PCBD)2 (4), and ZnP-(S-TCBD)2 (5). By means of steady-state and time-resolved absorption and luminescence spectroscopy (RT and 77 K), photoinduced intramolecular energy and electron transfer processes are evidenced, upon excitation of the porphyrin unit. In systems equipped with the strongest acceptor PCBD and the spacer (1, 4), no evidence of electron transfer is found in toluene, suggesting ZnP→PCBD energy transfer, followed by ultrafast (<10 ps) intrinsic deactivation of the PCBD moiety. In the analogous systems with the weaker acceptor TCBD (2, 5), photoinduced electron transfer occurs in benzonitrile, generating a charge-separated (CS) state lasting 2.3 μs. Such a long lifetime, in light of the high Gibbs free energy for charge recombination (ΔGCR=-1.39 eV), suggests a back-electron transfer process occurring in the so-called Marcus inverted region. Notably, in system 3 lacking the interchromophoric spacer, photoinduced charge separation followed by charge recombination occur within 20 ps. This is a consequence of the close vicinity of the donor-acceptor partners and of a virtually activationless electron transfer process. These results indicate that the strongly electron-accepting cyanobuta-1,3-dienes might become promising alternatives to quinone-, perylenediimide-, and fullerene-derived acceptors in multicomponent modules featuring photoinduced electron transfer. Catch the electron: Strongly electron-accepting multicyanobuta-1,3-dienes provide a new class of electron acceptors for incorporation into photoactive multicomponent systems. Photophysical and electrochemical investigations revealed photoinduced intramolecular electron transfer (PET) from a ZnII porphyrin to 1,1,4,4-tetracyanobuta-1,3-diene acceptor sites appended by an insulating spacer, with a long-lived charge-separated excited state of 2.3 μs in benzonitrile. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Cyanobuta-1,3-dienes as novel electron acceptors for photoactive multicomponent systems

Andrea Listorti;
2014-01-01

Abstract

The synthesis, electrochemical, and photophysical properties of five multicomponent systems featuring a ZnII porphyrin (ZnP) linked to one or two anilino donor-substituted pentacyano- (PCBD) or tetracyanobuta-1,3- dienes (TCBD), with and without an interchromophoric bridging spacer (S), are reported: ZnP-S-PCBD (1), ZnP-S-TCBD (2), ZnP-TCBD (3), ZnP-(S-PCBD)2 (4), and ZnP-(S-TCBD)2 (5). By means of steady-state and time-resolved absorption and luminescence spectroscopy (RT and 77 K), photoinduced intramolecular energy and electron transfer processes are evidenced, upon excitation of the porphyrin unit. In systems equipped with the strongest acceptor PCBD and the spacer (1, 4), no evidence of electron transfer is found in toluene, suggesting ZnP→PCBD energy transfer, followed by ultrafast (<10 ps) intrinsic deactivation of the PCBD moiety. In the analogous systems with the weaker acceptor TCBD (2, 5), photoinduced electron transfer occurs in benzonitrile, generating a charge-separated (CS) state lasting 2.3 μs. Such a long lifetime, in light of the high Gibbs free energy for charge recombination (ΔGCR=-1.39 eV), suggests a back-electron transfer process occurring in the so-called Marcus inverted region. Notably, in system 3 lacking the interchromophoric spacer, photoinduced charge separation followed by charge recombination occur within 20 ps. This is a consequence of the close vicinity of the donor-acceptor partners and of a virtually activationless electron transfer process. These results indicate that the strongly electron-accepting cyanobuta-1,3-dienes might become promising alternatives to quinone-, perylenediimide-, and fullerene-derived acceptors in multicomponent modules featuring photoinduced electron transfer. Catch the electron: Strongly electron-accepting multicyanobuta-1,3-dienes provide a new class of electron acceptors for incorporation into photoactive multicomponent systems. Photophysical and electrochemical investigations revealed photoinduced intramolecular electron transfer (PET) from a ZnII porphyrin to 1,1,4,4-tetracyanobuta-1,3-diene acceptor sites appended by an insulating spacer, with a long-lived charge-separated excited state of 2.3 μs in benzonitrile. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/406232
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 37
social impact