Software maintenance and evolution can introduce defects in software systems. For this reason, there is a great interest to identify defect prediction and estimation techniques. Recent research proposes just-in-time techniques to predict defective changes just at the commit level allowing the developers to fix the defect when it is introduced. However, the performance of existing just-in-time defect prediction models still requires to be improved. This paper proposes a new approach based on a large feature set containing product and process software metrics extracted from commits of software projects along with their evolution. The approach also introduces a deep temporal convolutional networks variant based on hierarchical attention layers to perform the fault prediction. The proposed approach is evaluated on a large dataset, composed of data gathered from six Java open-source systems. The obtained results show the effectiveness of the proposed approach in timely predicting defect proneness of code components.

Just-in-time software defect prediction using deep temporal convolutional networks

Pasquale Ardimento;
2022-01-01

Abstract

Software maintenance and evolution can introduce defects in software systems. For this reason, there is a great interest to identify defect prediction and estimation techniques. Recent research proposes just-in-time techniques to predict defective changes just at the commit level allowing the developers to fix the defect when it is introduced. However, the performance of existing just-in-time defect prediction models still requires to be improved. This paper proposes a new approach based on a large feature set containing product and process software metrics extracted from commits of software projects along with their evolution. The approach also introduces a deep temporal convolutional networks variant based on hierarchical attention layers to perform the fault prediction. The proposed approach is evaluated on a large dataset, composed of data gathered from six Java open-source systems. The obtained results show the effectiveness of the proposed approach in timely predicting defect proneness of code components.
File in questo prodotto:
File Dimensione Formato  
Ardimento2022_Article_Just-in-timeSoftwareDefectPred.pdf

Open Access dal 16/11/2023

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/405352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact