We study the differential polynomial identities of the algebra $UT_m(F)$ under the derivation action of the two dimensional metabelian Lie algebra, obtaining a generating set of the $T_L$- ideal they constitute. Then we determine the $S_n$-structure of their proper multilinear spaces and, for the minimal cases m=2, 3, their exact differential codimension sequence

Differential Polynomial Identities of Upper Triangular Matrices under the action of the two-dimensional metabelian Lie algebra

Vincenzo Nardozza
2021-01-01

Abstract

We study the differential polynomial identities of the algebra $UT_m(F)$ under the derivation action of the two dimensional metabelian Lie algebra, obtaining a generating set of the $T_L$- ideal they constitute. Then we determine the $S_n$-structure of their proper multilinear spaces and, for the minimal cases m=2, 3, their exact differential codimension sequence
File in questo prodotto:
File Dimensione Formato  
(2022) - DVN - Differential Polynomial Identities.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 959.72 kB
Formato Adobe PDF
959.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/403951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact