Mitochondrial carriers, which transport metabolites, nucleotides, and cofactors across the mitochondrial inner membrane, have six transmembrane α-helices enclosing a translocation pore with a central substrate binding site whose access is controlled by a cytoplasmic and a matrix gate (M-gate). The salt bridges formed by the three PX[DE]XX[RK] motifs located on the odd-numbered transmembrane α-helices greatly contribute to closing the M-gate. We have measured the transport rates of cysteine mutants of the charged residue positions in the PX[DE]XX[RK] motifs of the bovine oxoglutarate carrier, the yeast GTP/GDP carrier, and the yeast NAD+ transporter, which all lack one of these charged residues. Most single substitutions, including those of the non-charged and unpaired charged residues, completely inactivated transport. Double mutations of charged pairs showed that all three carriers contain salt bridges non-essential for activity. Two double substitutions of these non-essential charge pairs exhibited higher transport rates than their corre-sponding single mutants, whereas swapping the charged residues in these positions did not increase activity. The results demonstrate that some of the residues in the charged residue positions of the PX[DE]XX[KR] motifs are important for reasons other than forming salt bridges, probably for playing specific roles related to the substrate interaction-mediated conformational changes leading to the M-gate opening/closing

Evidence for Non-Essential Salt Bridges in the M-Gates of Mitochondrial Carrier Proteins

Miniero, Daniela Valeria;Di Noia, Maria Antonietta;Palmieri, Luigi;Palmieri, Ferdinando.
2022-01-01

Abstract

Mitochondrial carriers, which transport metabolites, nucleotides, and cofactors across the mitochondrial inner membrane, have six transmembrane α-helices enclosing a translocation pore with a central substrate binding site whose access is controlled by a cytoplasmic and a matrix gate (M-gate). The salt bridges formed by the three PX[DE]XX[RK] motifs located on the odd-numbered transmembrane α-helices greatly contribute to closing the M-gate. We have measured the transport rates of cysteine mutants of the charged residue positions in the PX[DE]XX[RK] motifs of the bovine oxoglutarate carrier, the yeast GTP/GDP carrier, and the yeast NAD+ transporter, which all lack one of these charged residues. Most single substitutions, including those of the non-charged and unpaired charged residues, completely inactivated transport. Double mutations of charged pairs showed that all three carriers contain salt bridges non-essential for activity. Two double substitutions of these non-essential charge pairs exhibited higher transport rates than their corre-sponding single mutants, whereas swapping the charged residues in these positions did not increase activity. The results demonstrate that some of the residues in the charged residue positions of the PX[DE]XX[KR] motifs are important for reasons other than forming salt bridges, probably for playing specific roles related to the substrate interaction-mediated conformational changes leading to the M-gate opening/closing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/402330
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact