Background: Bisphenol A (BPA), an important industrial material widely applied in daily products, is considered an endocrine-disrupting chemical that may adversely affect humans. Growing evidence have shown that intestinal bacterial alterations caused by BPA exposure play an important role in several local and systemic diseases. Aim of the study: finding evidence that BPA-induced alterations in gut microbiota composition and activity may perturb its role on human health. Results: evidence from several experimental settings show that both low and high doses of BPA, interfere with the hormonal, homeostatic and reproductive systems in both animals and human systems. Moreover, it has recently been classified as an environmental obesogenic, with metabolic-disrupting effects on lipid metabolism and pancreatic b-cell functions. Several evidence characterize PBA as an environmental contributor to type II diabetes, metabolic syndrome, and obesity. However, the highest estimates of the exposure derived from foods alone or in combination with other sources are 3 to 5 times below the new tolerable daily intake (TDI) value, today reduced by the European Food Safety Authority (EFSA) experts from 50 micrograms per kilogramme of bodyweight per day (µg/kg bw/day) to 4 µg/kg bw/day. Conclusions: Considering estimates for the total amount of BPA that can be ingested daily over a lifetime, many International Health Authorities conclude that dietary exposure of adult humans to BPA does not represent a risk to consumers' health, declaring its safety due to very-low established levels in food and water and declare any appreciable health risk.

The toxic effects of endocrine disrupting chemicals (EDCs) on gut microbiota: Bisphenol A (BPA). A review

Topi, Skender;Gagliano-Candela, Roberto;De Nitto, Emanuele;Polimeno, Lorenzo;Montagnani, Monica;Santacroce, Luigi
2022-01-01

Abstract

Background: Bisphenol A (BPA), an important industrial material widely applied in daily products, is considered an endocrine-disrupting chemical that may adversely affect humans. Growing evidence have shown that intestinal bacterial alterations caused by BPA exposure play an important role in several local and systemic diseases. Aim of the study: finding evidence that BPA-induced alterations in gut microbiota composition and activity may perturb its role on human health. Results: evidence from several experimental settings show that both low and high doses of BPA, interfere with the hormonal, homeostatic and reproductive systems in both animals and human systems. Moreover, it has recently been classified as an environmental obesogenic, with metabolic-disrupting effects on lipid metabolism and pancreatic b-cell functions. Several evidence characterize PBA as an environmental contributor to type II diabetes, metabolic syndrome, and obesity. However, the highest estimates of the exposure derived from foods alone or in combination with other sources are 3 to 5 times below the new tolerable daily intake (TDI) value, today reduced by the European Food Safety Authority (EFSA) experts from 50 micrograms per kilogramme of bodyweight per day (µg/kg bw/day) to 4 µg/kg bw/day. Conclusions: Considering estimates for the total amount of BPA that can be ingested daily over a lifetime, many International Health Authorities conclude that dietary exposure of adult humans to BPA does not represent a risk to consumers' health, declaring its safety due to very-low established levels in food and water and declare any appreciable health risk.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/391717
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact