This work investigates kinetics and transport of CO2 microwave plasmas through simulation results from a 1D radial fluid model and experiments. Simulation results are validated against spatially resolved measurements of neutral species mole fractions, gas temperature, electron number density and temperature obtained by means of Thomson and Raman scattering diagnostics, yielding good agreement. As such, the model is used to complement experiments and assess the main chemical reactions, mass and energy transport in diffuse and contracted plasma regimes. From model results, it is found that, as pressure is raised, the inhomogeneous gas heating induces significant gradients in neutral and charged species mole fractions profiles. Moreover, the transition from diffuse to contracted plasma is accompanied by a change in the dominant charged species, which favours electron–ion recombination over dissociative attachment. Associative ionization rates increase in the plasma core from diffuse to contracted regime. These processes contribute to the increase in the peak electron number density with pressure, that determines radial plasma contraction.

Charged particle kinetics and gas heating in {CO}2 microwave plasma contraction: comparisons of simulations and experiments

Savino Longo
Membro del Collaboration Group
;
2022-01-01

Abstract

This work investigates kinetics and transport of CO2 microwave plasmas through simulation results from a 1D radial fluid model and experiments. Simulation results are validated against spatially resolved measurements of neutral species mole fractions, gas temperature, electron number density and temperature obtained by means of Thomson and Raman scattering diagnostics, yielding good agreement. As such, the model is used to complement experiments and assess the main chemical reactions, mass and energy transport in diffuse and contracted plasma regimes. From model results, it is found that, as pressure is raised, the inhomogeneous gas heating induces significant gradients in neutral and charged species mole fractions profiles. Moreover, the transition from diffuse to contracted plasma is accompanied by a change in the dominant charged species, which favours electron–ion recombination over dissociative attachment. Associative ionization rates increase in the plasma core from diffuse to contracted regime. These processes contribute to the increase in the peak electron number density with pressure, that determines radial plasma contraction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/391709
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact