Various applications in remote sensing demand automatic detection of changes in optical satellite images of the same scene acquired over time. This paper investigates how to leverage autoencoders in change vector analysis, in order to better delineate possible changes in a couple of co-registered, optical satellite images. Let us consider both a primary image and a secondary image acquired over time in the same scene. First an autoencoder artificial neural network is trained on the primary image. Then the reconstruction of both images is restored via the trained autoencoder so that the spectral angle distance can be computed pixelwise on the reconstructed data vectors. Finally, a threshold algorithm is used to automatically separate the foreground changed pixels from the unchanged background. The assessment of the proposed method is performed in three couples of benchmark hyperspectral images using different criteria, such as overall accuracy, missed alarms and false alarms. In addition, the method supplies promising results in the analysis of a couple of multispectral images of the burned area in the Majella National Park (Italy).

Leveraging autoencoders in change vector analysis of optical satellite images

Andresini G.
;
Appice A.;Malerba D.;Taggio N.;Aiello A.
2021-01-01

Abstract

Various applications in remote sensing demand automatic detection of changes in optical satellite images of the same scene acquired over time. This paper investigates how to leverage autoencoders in change vector analysis, in order to better delineate possible changes in a couple of co-registered, optical satellite images. Let us consider both a primary image and a secondary image acquired over time in the same scene. First an autoencoder artificial neural network is trained on the primary image. Then the reconstruction of both images is restored via the trained autoencoder so that the spectral angle distance can be computed pixelwise on the reconstructed data vectors. Finally, a threshold algorithm is used to automatically separate the foreground changed pixels from the unchanged background. The assessment of the proposed method is performed in three couples of benchmark hyperspectral images using different criteria, such as overall accuracy, missed alarms and false alarms. In addition, the method supplies promising results in the analysis of a couple of multispectral images of the burned area in the Majella National Park (Italy).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/389832
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact