The adhesive manufacturing industry needs more eco-sustainable processes. In this regard, the main road is to replace raw fossil materials with renewable resources or waste biomass, and simultaneously improve synthetic steps by using clean and greener reagents under mild conditions. In this paper, a synthetic pathway for producing biobased succinyl peroxide (SP) from waste biomass is reported, and then the application range of this polymerization agent to methacrylates and styrene-free resins is extended. At the same time, new formulations of pastes based on benzoyl or succinyl peroxide, displaying an almost complete biobased carbon content, are investigated and tested as cross-linking agents for mastic marble and unsaturated polyester resins. Physicochemical characterization of the final products and polymers is carried out with thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Gel Permeation Chromatography (GPC), Nuclear Magnetic Resonance (NMR) and peak exothermic curve analyses.

Biobased Approach for Synthesis of Polymers and Sustainable Formulation of Industrial Hardeners

Lorenzo Veronico;Michele Andriani;Michele Casiello;Pietro Cotugno;Luigi Gentile;Antonio Monopoli;Lucia D'Accolti
2022-01-01

Abstract

The adhesive manufacturing industry needs more eco-sustainable processes. In this regard, the main road is to replace raw fossil materials with renewable resources or waste biomass, and simultaneously improve synthetic steps by using clean and greener reagents under mild conditions. In this paper, a synthetic pathway for producing biobased succinyl peroxide (SP) from waste biomass is reported, and then the application range of this polymerization agent to methacrylates and styrene-free resins is extended. At the same time, new formulations of pastes based on benzoyl or succinyl peroxide, displaying an almost complete biobased carbon content, are investigated and tested as cross-linking agents for mastic marble and unsaturated polyester resins. Physicochemical characterization of the final products and polymers is carried out with thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Gel Permeation Chromatography (GPC), Nuclear Magnetic Resonance (NMR) and peak exothermic curve analyses.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/389211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact