The rational design of heterojunctions based on metal halide perovskites (MHPs) is an effective route to create novel photocatalysts to run relevant solar-driven reactions. In this work, an experimental and computational study on the synergic coupling between a lead-free Cs3Bi2Br9 perovskite derivative and g-C3N4 is presented. A relevant boost of the hydrogen photogeneration by more than one order of magnitude is recorded when going from pure g-C3N4 to the Cs3Bi2Br9/g-C3N4 system. Effective catalytic activity is also achieved in the degradation of the organic pollutant with methylene blue as a model molecule. Based upon complementary experimental outputs and advanced computational modeling, a rationale is provided to understand the heterojunction functionality as well as the trend of hydrogen production as a function of perovskite loading. This work adds further solid evidence for the possible application of MHPs in photocatalysis, which is emerging as an extremely appealing and promising field of application of these superior semiconductors.
Experimental Strategy and Mechanistic View to Boost the Photocatalytic Activity of Cs3Bi2Br9 Lead-Free Perovskite Derivative by g-C3N4 Composite Engineering
Dibenedetto C. N.Membro del Collaboration Group
;Listorti A.Membro del Collaboration Group
;
2021-01-01
Abstract
The rational design of heterojunctions based on metal halide perovskites (MHPs) is an effective route to create novel photocatalysts to run relevant solar-driven reactions. In this work, an experimental and computational study on the synergic coupling between a lead-free Cs3Bi2Br9 perovskite derivative and g-C3N4 is presented. A relevant boost of the hydrogen photogeneration by more than one order of magnitude is recorded when going from pure g-C3N4 to the Cs3Bi2Br9/g-C3N4 system. Effective catalytic activity is also achieved in the degradation of the organic pollutant with methylene blue as a model molecule. Based upon complementary experimental outputs and advanced computational modeling, a rationale is provided to understand the heterojunction functionality as well as the trend of hydrogen production as a function of perovskite loading. This work adds further solid evidence for the possible application of MHPs in photocatalysis, which is emerging as an extremely appealing and promising field of application of these superior semiconductors.File | Dimensione | Formato | |
---|---|---|---|
Romani et al 2021adfm.202104428.pdf
accesso aperto
Descrizione: Articolo in rivista
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
599.91 kB
Formato
Adobe PDF
|
599.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.