Herein, we focus on improving the long-term chemical and thermomechanical stability of perovskite solar cells (PSCs), two major challenges currently limiting their commercial deployment. Our strategy incorporates a long-chain starch polymer into the perovskite precursor. The starch polymer confers multiple beneficial effects by forming hydrogen bonds with the methylammonium iodide precursor, templating perovskite growth that results in a compact and homogeneous film deposited in a simple one-step coating (antisolvent-free). The inclusion of starch in the methylammonium lead iodide films strongly improves their thermomechanical and environmental stability while maintaining a high photovoltaic performance. The fracture energy (Gc) of the film is increased to above 5 J/m2 by creating a nanocomposite that provides intrinsic reinforcement at grain boundaries. Additionally, improved optoelectronic properties achieved with the starch polymer enable good photostability of the active layer and enhanced resistance to thermal cycling.

Robust, High-Performing Maize-Perovskite-Based Solar Cells with Improved Stability

Listorti A.
Membro del Collaboration Group
;
Lauciello S.;
2021-01-01

Abstract

Herein, we focus on improving the long-term chemical and thermomechanical stability of perovskite solar cells (PSCs), two major challenges currently limiting their commercial deployment. Our strategy incorporates a long-chain starch polymer into the perovskite precursor. The starch polymer confers multiple beneficial effects by forming hydrogen bonds with the methylammonium iodide precursor, templating perovskite growth that results in a compact and homogeneous film deposited in a simple one-step coating (antisolvent-free). The inclusion of starch in the methylammonium lead iodide films strongly improves their thermomechanical and environmental stability while maintaining a high photovoltaic performance. The fracture energy (Gc) of the film is increased to above 5 J/m2 by creating a nanocomposite that provides intrinsic reinforcement at grain boundaries. Additionally, improved optoelectronic properties achieved with the starch polymer enable good photostability of the active layer and enhanced resistance to thermal cycling.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/388811
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact