Immunosenescence is the general term used to describe the aging-associated decline of immunological function that explains the higher susceptibility to infectious diseases and cancer, increased autoimmunity, or the reduced effectiveness of vaccinations. Senescence of CD8+ T-cells has been described in all these conditions. The most important classical markers of T senescent cells are the cell cycle inhibitors p16ink4a, p21, and p53, together with positivity for SA-βgal expression and the acquirement of a peculiar IFNγ -based secretory phenotype commonly defined SASP (Senescence Associated Secretory Phenotype). Other surface markers are the CD28 and CD27 loss together with gain of expression of CD45RA, CD57, TIGIT, and/or KLRG1. However, this characterization could not be sufficient to distinguish from truly senescent cells and exhausted T-cells. Furthermore, more complexity is added by the wide heterogeneity of T-cells subset in aged individuals or in the tumor microenvironment. A combined analysis by multicolor flow cytometry for surface and intracellular markers integrated with gene-expression arrays and single-cell RNA sequencing is required to develop effective interventions for therapeutic modulation of specific T-cell subsets. The RNASeq offers the great possibility to reveal at single-cell resolution the exact molecular hallmarks of senescent CD8+ T-cells without the limitations of bulk analysis. Furthermore, the comprehensive integration of multidimensional approaches (genomics, epigenomics, proteomics, metabolomics) will increase our global understanding of how immunosenescence of T-cells is interlinked to human aging.

Methods for Characterization of Senescent Circulating and Tumor-Infiltrating T-Cells: An Overview from Multicolor Flow Cytometry to Single-Cell RNA Sequencing

Franzin R.;Stasi A.;Gesualdo L.
2021-01-01

Abstract

Immunosenescence is the general term used to describe the aging-associated decline of immunological function that explains the higher susceptibility to infectious diseases and cancer, increased autoimmunity, or the reduced effectiveness of vaccinations. Senescence of CD8+ T-cells has been described in all these conditions. The most important classical markers of T senescent cells are the cell cycle inhibitors p16ink4a, p21, and p53, together with positivity for SA-βgal expression and the acquirement of a peculiar IFNγ -based secretory phenotype commonly defined SASP (Senescence Associated Secretory Phenotype). Other surface markers are the CD28 and CD27 loss together with gain of expression of CD45RA, CD57, TIGIT, and/or KLRG1. However, this characterization could not be sufficient to distinguish from truly senescent cells and exhausted T-cells. Furthermore, more complexity is added by the wide heterogeneity of T-cells subset in aged individuals or in the tumor microenvironment. A combined analysis by multicolor flow cytometry for surface and intracellular markers integrated with gene-expression arrays and single-cell RNA sequencing is required to develop effective interventions for therapeutic modulation of specific T-cell subsets. The RNASeq offers the great possibility to reveal at single-cell resolution the exact molecular hallmarks of senescent CD8+ T-cells without the limitations of bulk analysis. Furthermore, the comprehensive integration of multidimensional approaches (genomics, epigenomics, proteomics, metabolomics) will increase our global understanding of how immunosenescence of T-cells is interlinked to human aging.
2021
978-1-0716-1507-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/387867
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact