In this note, we prove a blow-up result for the semilinear damped wave equation in a compact Lie group with power nonlinearity |u|^p for any p>1, under suitable integral sign assumptions for the initial data, by using an iteration argument. A byproduct of this method is the upper bound estimate for the lifespan of a local in time solution. As a preliminary result, a local (in time) existence result is proved in the energy space via Fourier analysis on compact Lie groups.

On the blow – up of solutions to semilinear damped wave equations with power nonlinearity in compact Lie groups

Palmieri A.
2021-01-01

Abstract

In this note, we prove a blow-up result for the semilinear damped wave equation in a compact Lie group with power nonlinearity |u|^p for any p>1, under suitable integral sign assumptions for the initial data, by using an iteration argument. A byproduct of this method is the upper bound estimate for the lifespan of a local in time solution. As a preliminary result, a local (in time) existence result is proved in the energy space via Fourier analysis on compact Lie groups.
File in questo prodotto:
File Dimensione Formato  
Palmieri A. (2021 JDE) - On the blow – up of solutions to semilinear damped wave equations with power nonlinearity in compact Lie groups.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 326.4 kB
Formato Adobe PDF
326.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Palmieri A. (2021 JDE - ArXiv version) - On the blow – up of solutions to semilinear damped wave equations with power nonlinearity in compact Lie groups.pdf

accesso aperto

Descrizione: versione arxiv
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 323.71 kB
Formato Adobe PDF
323.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/387829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact