In this note, we prove a blow-up result for the semilinear damped wave equation in a compact Lie group with power nonlinearity |u|^p for any p>1, under suitable integral sign assumptions for the initial data, by using an iteration argument. A byproduct of this method is the upper bound estimate for the lifespan of a local in time solution. As a preliminary result, a local (in time) existence result is proved in the energy space via Fourier analysis on compact Lie groups.
On the blow – up of solutions to semilinear damped wave equations with power nonlinearity in compact Lie groups
Palmieri A.
2021-01-01
Abstract
In this note, we prove a blow-up result for the semilinear damped wave equation in a compact Lie group with power nonlinearity |u|^p for any p>1, under suitable integral sign assumptions for the initial data, by using an iteration argument. A byproduct of this method is the upper bound estimate for the lifespan of a local in time solution. As a preliminary result, a local (in time) existence result is proved in the energy space via Fourier analysis on compact Lie groups.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Palmieri A. (2021 JDE) - On the blow – up of solutions to semilinear damped wave equations with power nonlinearity in compact Lie groups.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
326.4 kB
Formato
Adobe PDF
|
326.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Palmieri A. (2021 JDE - ArXiv version) - On the blow – up of solutions to semilinear damped wave equations with power nonlinearity in compact Lie groups.pdf
accesso aperto
Descrizione: versione arxiv
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
323.71 kB
Formato
Adobe PDF
|
323.71 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.