In this note, we study the semilinear wave equation with power nonlinearity |u|^p on compact Lie groups. First, we prove a local in time existence result in the energy space via Fourier analysis on compact Lie groups. Then, we prove a blow-up result for the semilinear Cauchy problem for any p> 1 , under suitable sign assumptions for the initial data. Furthermore, sharp lifespan estimates for local (in time) solutions are derived.

Semilinear wave equation on compact Lie groups

Palmieri A.
2021-01-01

Abstract

In this note, we study the semilinear wave equation with power nonlinearity |u|^p on compact Lie groups. First, we prove a local in time existence result in the energy space via Fourier analysis on compact Lie groups. Then, we prove a blow-up result for the semilinear Cauchy problem for any p> 1 , under suitable sign assumptions for the initial data. Furthermore, sharp lifespan estimates for local (in time) solutions are derived.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/387811
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact