In this paper, we consider the Cauchy problem for the semilinear damped wave equation on the Heisenberg group with power non-linearity. We prove that the critical exponent is the Fujita exponent pFuj(Q) = 1 + 2/Q, where Q is the homogeneous dimension of the Heisenberg group. On the one hand, we will prove the global existence of small data solutions for p>pFuj(Q) in an exponential weighted energy space. On the other hand, a blow-up result for 1 < p ≤ pFuj(Q) under certain integral sign assumptions for the Cauchy data by using the test function method.

Critical exponent of Fujita-type for the semilinear damped wave equation on the Heisenberg group with power nonlinearity

Palmieri A.
2020-01-01

Abstract

In this paper, we consider the Cauchy problem for the semilinear damped wave equation on the Heisenberg group with power non-linearity. We prove that the critical exponent is the Fujita exponent pFuj(Q) = 1 + 2/Q, where Q is the homogeneous dimension of the Heisenberg group. On the one hand, we will prove the global existence of small data solutions for p>pFuj(Q) in an exponential weighted energy space. On the other hand, a blow-up result for 1 < p ≤ pFuj(Q) under certain integral sign assumptions for the Cauchy data by using the test function method.
File in questo prodotto:
File Dimensione Formato  
Georgiev V., Palmieri A. (2020 JDE) - Critical exponent of Fujita-type for the semilinear damped wave equation on the Heisenberg group with power nonlinearity.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 406.45 kB
Formato Adobe PDF
406.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/387803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact