In this paper, we consider the semilinear Cauchy problem for the heat equation with power nonlinearity in the Heisenberg group Hn. The heat operator is given in this case by ∂t-ΔH, where ΔH is the so-called sub-Laplacian on Hn. We prove that the Fujita exponent 1 + 2 / Q is critical, where Q= 2 n+ 2 is the homogeneous dimension of Hn. Furthermore, we prove sharp lifespan estimates for local in time solutions in the subcritical case and in the critical case. In order to get the upper bound estimate for the lifespan (especially, in the critical case), we employ a revisited test function method developed recently by Ikeda–Sobajima. On the other hand, to find the lower bound estimate for the lifespan, we prove a local in time result in weighted L∞ space.

Lifespan estimates for local in time solutions to the semilinear heat equation on the Heisenberg group

Palmieri A.
2021-01-01

Abstract

In this paper, we consider the semilinear Cauchy problem for the heat equation with power nonlinearity in the Heisenberg group Hn. The heat operator is given in this case by ∂t-ΔH, where ΔH is the so-called sub-Laplacian on Hn. We prove that the Fujita exponent 1 + 2 / Q is critical, where Q= 2 n+ 2 is the homogeneous dimension of Hn. Furthermore, we prove sharp lifespan estimates for local in time solutions in the subcritical case and in the critical case. In order to get the upper bound estimate for the lifespan (especially, in the critical case), we employ a revisited test function method developed recently by Ikeda–Sobajima. On the other hand, to find the lower bound estimate for the lifespan, we prove a local in time result in weighted L∞ space.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/387795
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact