Heavy axion-like particles (ALPs), with masses ma ≳ 100 keV, coupled with photons, would be copiously produced in a supernova (SN) core via Primakoff process and photon coalescence. Using a state-of-the-art SN model, we revisit the energy-loss SN 1987A bounds on axion-photon coupling. Moreover, we point out that heavy ALPs with masses ma ≳ 100 MeV and axion-photon coupling gaγ ≳ 4 × 10−9 GeV−1 would decay into photons behind the shock-wave producing a possible enhancement in the energy deposition that would boost the SN shock revival.

Heavy axion-like particles and core-collapse supernovae: constraints and impact on the explosion mechanism

Lucente, Giuseppe;Carenza, Pierluca;Mirizzi, Alessandro
2020-01-01

Abstract

Heavy axion-like particles (ALPs), with masses ma ≳ 100 keV, coupled with photons, would be copiously produced in a supernova (SN) core via Primakoff process and photon coalescence. Using a state-of-the-art SN model, we revisit the energy-loss SN 1987A bounds on axion-photon coupling. Moreover, we point out that heavy ALPs with masses ma ≳ 100 MeV and axion-photon coupling gaγ ≳ 4 × 10−9 GeV−1 would decay into photons behind the shock-wave producing a possible enhancement in the energy deposition that would boost the SN shock revival.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/387694
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact