The Sun is a well-studied astrophysical source of axionlike particles (ALPs), produced mainly through the Primakoff process. Moreover, in the Sun there exist large-scale magnetic fields that catalyze an additional ALP production via a coherent conversion of thermal photons. We study this contribution to the solar ALP emissivity, typically neglected in previous investigations. Furthermore, we discuss additional bounds on the ALP-photon coupling from energy-loss arguments, and the detection perspectives of this new ALP flux at future helioscope and dark matter experiments.

Production of axionlike particles from photon conversions in large-scale solar magnetic fields

Carenza P.;Mirizzi A.
2020-01-01

Abstract

The Sun is a well-studied astrophysical source of axionlike particles (ALPs), produced mainly through the Primakoff process. Moreover, in the Sun there exist large-scale magnetic fields that catalyze an additional ALP production via a coherent conversion of thermal photons. We study this contribution to the solar ALP emissivity, typically neglected in previous investigations. Furthermore, we discuss additional bounds on the ALP-photon coupling from energy-loss arguments, and the detection perspectives of this new ALP flux at future helioscope and dark matter experiments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/387558
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact