It was recently pointed out that very energetic subclasses of supernovae (SNe), like hypernovae and superluminous SNe, might host ultrastrong magnetic fields in their core. Such fields may catalyze the production of feebly interacting particles, changing the predicted emission rates. Here we consider the case of axionlike particles (ALPs) and show that the predicted large scale magnetic fields in the core contribute significantly to the ALP production, via a coherent conversion of thermal photons. Using recent state-of-the-art supernova (SN) simulations, including magnetohydrodynamics, we find that, if ALPs have masses , their emissivity in such rare but exciting conditions via magnetic conversions would be over 2 orders of magnitude larger than previously estimated. Moreover, the radiative decay of these massive ALPs would lead to a peculiar delay in the arrival times of the daughter photons. Therefore, high-statistics gamma-ray satellites can potentially discover MeV ALPs in an unprobed region of the parameter space and shed light on the magnetohydrodynamical nature of the SN explosion.
Axionlike Particles from Hypernovae
Caputo A.;Carenza P.;Lucente G.;Mirizzi A.
2021-01-01
Abstract
It was recently pointed out that very energetic subclasses of supernovae (SNe), like hypernovae and superluminous SNe, might host ultrastrong magnetic fields in their core. Such fields may catalyze the production of feebly interacting particles, changing the predicted emission rates. Here we consider the case of axionlike particles (ALPs) and show that the predicted large scale magnetic fields in the core contribute significantly to the ALP production, via a coherent conversion of thermal photons. Using recent state-of-the-art supernova (SN) simulations, including magnetohydrodynamics, we find that, if ALPs have masses , their emissivity in such rare but exciting conditions via magnetic conversions would be over 2 orders of magnitude larger than previously estimated. Moreover, the radiative decay of these massive ALPs would lead to a peculiar delay in the arrival times of the daughter photons. Therefore, high-statistics gamma-ray satellites can potentially discover MeV ALPs in an unprobed region of the parameter space and shed light on the magnetohydrodynamical nature of the SN explosion.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.127.181102.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
509.79 kB
Formato
Adobe PDF
|
509.79 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.