We establish Moser-Trudinger type inequalities in presence of a logarithmic convolution potential when the domain is a ball or the entire space $R^2$. Moreover, we characterize critical nonlinear growth rates for these inequalities to hold and for the existence of corresponding extremal functions. In addition, we show that extremal functions satisfy corresponding Euler-Lagrange equations, and we derive general symmetry and uniqueness results for solutions of these equations.
Trudinger–Moser‐type inequality with logarithmic convolution potentials
CINGOLANI S.
;
2022-01-01
Abstract
We establish Moser-Trudinger type inequalities in presence of a logarithmic convolution potential when the domain is a ball or the entire space $R^2$. Moreover, we characterize critical nonlinear growth rates for these inequalities to hold and for the existence of corresponding extremal functions. In addition, we show that extremal functions satisfy corresponding Euler-Lagrange equations, and we derive general symmetry and uniqueness results for solutions of these equations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Journal of London Math Soc - 2022 - Cingolani - Trudinger Moser‐type inequality with logarithmic convolution potentials.pdf
non disponibili
Descrizione: articolo peer reviewed
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
321.83 kB
Formato
Adobe PDF
|
321.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Cingolani-Weth manuscript-R (with DOI).pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
444.51 kB
Formato
Adobe PDF
|
444.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.