We establish Moser-Trudinger type inequalities in presence of a logarithmic convolution potential when the domain is a ball or the entire space $R^2$. Moreover, we characterize critical nonlinear growth rates for these inequalities to hold and for the existence of corresponding extremal functions. In addition, we show that extremal functions satisfy corresponding Euler-Lagrange equations, and we derive general symmetry and uniqueness results for solutions of these equations.

Trudinger–Moser‐type inequality with logarithmic convolution potentials

CINGOLANI S.
;
2022-01-01

Abstract

We establish Moser-Trudinger type inequalities in presence of a logarithmic convolution potential when the domain is a ball or the entire space $R^2$. Moreover, we characterize critical nonlinear growth rates for these inequalities to hold and for the existence of corresponding extremal functions. In addition, we show that extremal functions satisfy corresponding Euler-Lagrange equations, and we derive general symmetry and uniqueness results for solutions of these equations.
File in questo prodotto:
File Dimensione Formato  
Journal of London Math Soc - 2022 - Cingolani - Trudinger Moser‐type inequality with logarithmic convolution potentials.pdf

non disponibili

Descrizione: articolo peer reviewed
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 321.83 kB
Formato Adobe PDF
321.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Cingolani-Weth manuscript-R (with DOI).pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 444.51 kB
Formato Adobe PDF
444.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/383589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact