We consider the equation \begin{equation*} \px(\pt u+\px f(u)-\beta \pxxx u)=\gamma u, \end{equation*} that includes the short pulse, the Ostrovsky-Hunter, and the Korteweg-deVries ones. We consider here the asymptotic behavior as $\gamma\to 0$. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the $L^p$ setting.

Dispersive and Diffusive limits for Ostrovsky-Hunter type equations

COCLITE, Giuseppe Maria;DI RUVO, LORENZO
2015-01-01

Abstract

We consider the equation \begin{equation*} \px(\pt u+\px f(u)-\beta \pxxx u)=\gamma u, \end{equation*} that includes the short pulse, the Ostrovsky-Hunter, and the Korteweg-deVries ones. We consider here the asymptotic behavior as $\gamma\to 0$. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the $L^p$ setting.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/38243
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact