The aim of this paper is to discuss the behaviour of the numerical solution of systems of nonlinear reaction-diffusion equations with homogeneous Neumann boundary conditions. We show that, under certain conditions, the solution obtained using known finite difference methods reproduces the behaviour of the exact solution. In particular we prove that the numerical solution decays as time increases to a spatially homogeneous vector, which is a suitably «weighted» mean value of the numerical solution itself.

Decay to spatially homogeneous states for the numerical solution of reaction-diffusion systems

LOPEZ, Luciano
1982-01-01

Abstract

The aim of this paper is to discuss the behaviour of the numerical solution of systems of nonlinear reaction-diffusion equations with homogeneous Neumann boundary conditions. We show that, under certain conditions, the solution obtained using known finite difference methods reproduces the behaviour of the exact solution. In particular we prove that the numerical solution decays as time increases to a spatially homogeneous vector, which is a suitably «weighted» mean value of the numerical solution itself.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/38229
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact