We consider an initial-boundary-value problem for a time-fractional diffusion equation with initial condition u0(x) and homogeneous Dirichlet boundary conditions in a bounded interval [0, L]. We study a semidiscrete approximation scheme based on the pseudo-spectral method on Chebyshev-Gauss-Lobatto nodes. In order to preserve the high accuracy of the spectral approximation we use an approach based on the evaluation of the Mittag-Leffler function on matrix arguments for the integration along the time variable. Some examples are presented and numerical experiments illustrate the effectiveness of the proposed approach

A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation

GARRAPPA, Roberto
2015-01-01

Abstract

We consider an initial-boundary-value problem for a time-fractional diffusion equation with initial condition u0(x) and homogeneous Dirichlet boundary conditions in a bounded interval [0, L]. We study a semidiscrete approximation scheme based on the pseudo-spectral method on Chebyshev-Gauss-Lobatto nodes. In order to preserve the high accuracy of the spectral approximation we use an approach based on the evaluation of the Mittag-Leffler function on matrix arguments for the integration along the time variable. Some examples are presented and numerical experiments illustrate the effectiveness of the proposed approach
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/38171
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 22
social impact