Vaccine hesitancy (VH) might represent a serious threat to the next COVID-19 mass immunization campaign. We use machine learning algorithms to predict communities at a high risk of VH relying on area-level indicators easily available to policymakers. We illustrate our approach on data from child immunization campaigns for seven nonmandatory vaccines carried out in 6062 Italian municipalities in 2016. A battery of machine learning models is compared in terms of area under the receiver operating characteristics curve. We find that the Random Forest algorithm best predicts areas with a high risk of VH improving the unpredictable baseline level by 24% in terms of accuracy. Among the area-level indicators, the proportion of waste recycling and the employment rate are found to be the most powerful predictors of high VH. This can support policymakers to target area-level provaccine awareness campaigns.

Predicting vaccine hesitancy from area-level indicators: A machine learning approach

Raffaele Lagravinese;
2021-01-01

Abstract

Vaccine hesitancy (VH) might represent a serious threat to the next COVID-19 mass immunization campaign. We use machine learning algorithms to predict communities at a high risk of VH relying on area-level indicators easily available to policymakers. We illustrate our approach on data from child immunization campaigns for seven nonmandatory vaccines carried out in 6062 Italian municipalities in 2016. A battery of machine learning models is compared in terms of area under the receiver operating characteristics curve. We find that the Random Forest algorithm best predicts areas with a high risk of VH improving the unpredictable baseline level by 24% in terms of accuracy. Among the area-level indicators, the proportion of waste recycling and the employment rate are found to be the most powerful predictors of high VH. This can support policymakers to target area-level provaccine awareness campaigns.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/380256
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact