In this paper we consider the Liouville equation Δu+λ2eu=0 with Dirichlet boundary conditions in a two dimensional, doubly connected domain Ω. We show that there exists a simple, closed curve γ⊂Ω such that for a sequence λn→0 and a sequence of solutions un it holds [Formula presented], where H is a harmonic function in Ω∖γ and [Formula presented], where cΩ is a constant depending on the conformal class of Ω only.

Maximal solution of the Liouville equation in doubly connected domains

Vaira G.
2019-01-01

Abstract

In this paper we consider the Liouville equation Δu+λ2eu=0 with Dirichlet boundary conditions in a two dimensional, doubly connected domain Ω. We show that there exists a simple, closed curve γ⊂Ω such that for a sequence λn→0 and a sequence of solutions un it holds [Formula presented], where H is a harmonic function in Ω∖γ and [Formula presented], where cΩ is a constant depending on the conformal class of Ω only.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/379887
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact