We investigate the deformations of pairs (X,L), where L is a line bundle on a smooth projective variety X, defined over an algebraically closed field of characteristic 0. In particular, we prove that the DG-Lie algebra controlling the deformations of the pair (X,L) is homotopy abelian whenever X has trivial canonical bundle, and so these deformations are unobstructed.

Homotopy abelianity of the DG-Lie algebra controlling deformations of pairs (variety with trivial canonical bundle, line bundle)

Iacono D.
;
2021-01-01

Abstract

We investigate the deformations of pairs (X,L), where L is a line bundle on a smooth projective variety X, defined over an algebraically closed field of characteristic 0. In particular, we prove that the DG-Lie algebra controlling the deformations of the pair (X,L) is homotopy abelian whenever X has trivial canonical bundle, and so these deformations are unobstructed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/379576
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact