In the last decades speaking and writing habits have changed. Many works faced the author identification task by exploiting frequencybased approaches, numeric techniques or writing style analysis. Following the last approach we propose a technique for author identification based on First-Order Logic. Specifically, we translate the complex data represented by natural language text to complex (relational) patterns that represent the writing style of an author. Then, we model an author as the result of clustering the relational descriptions associated to the sentences. The underlying idea is that such a model can express the typical way in which an author composes the sentences in his writings. So, if we can map such writing habits from the unknown-author model to the known-author model, we can conclude that the author is the same. Preliminary results are promising and the approach seems viable in real contexts since it does not need a training phase and performs well also with short texts.

A Relational Unsupervised Approach to Author Identification

FERILLI, Stefano;
2014-01-01

Abstract

In the last decades speaking and writing habits have changed. Many works faced the author identification task by exploiting frequencybased approaches, numeric techniques or writing style analysis. Following the last approach we propose a technique for author identification based on First-Order Logic. Specifically, we translate the complex data represented by natural language text to complex (relational) patterns that represent the writing style of an author. Then, we model an author as the result of clustering the relational descriptions associated to the sentences. The underlying idea is that such a model can express the typical way in which an author composes the sentences in his writings. So, if we can map such writing habits from the unknown-author model to the known-author model, we can conclude that the author is the same. Preliminary results are promising and the approach seems viable in real contexts since it does not need a training phase and performs well also with short texts.
2014
978-3-319-08406-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/37923
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact