In this paper we establish a new existence result for the quasilinear elliptic problem \[ -{\rm div}(A(x,u)|\nabla u|^{p-2}\nabla u) +\frac1p A_t(x,u)|\nabla u|^p + V(x)|u|^{p-2} u = g(x,u)\quad\mbox{ in } \R^N, \] with $N\ge 2$, $p>1$ and $V:\R^N\to\R$ suitable measurable positive function, which generalizes the modified Schrödinger equation. Here, we suppose that $A:\R^N\times\R\rightarrow\R$ is a $\mathcal{C}^{1}$--Caratheodory function such that $A_t(x,t) = \frac{\partial A}{\partial t} (x,t)$ and a given Carath\'eodory function $g:\R^N\times\R\rightarrow\R$ has a subcritical growth and satisfies the Ambrosetti--Rabinowitz condition. Since the coefficient of the principal part depends also on the solution itself, we study the interaction of two different norms in a suitable Banach space so to obtain a "good" variational approach. Thus, by means of approximation arguments on bounded sets we can state the existence of a nontrivial weak bounded solution.
Bounded solutions for quasilinear modified Schrödinger equations
Anna Maria Candela;Addolorata Salvatore;Caterina Sportelli
2022-01-01
Abstract
In this paper we establish a new existence result for the quasilinear elliptic problem \[ -{\rm div}(A(x,u)|\nabla u|^{p-2}\nabla u) +\frac1p A_t(x,u)|\nabla u|^p + V(x)|u|^{p-2} u = g(x,u)\quad\mbox{ in } \R^N, \] with $N\ge 2$, $p>1$ and $V:\R^N\to\R$ suitable measurable positive function, which generalizes the modified Schrödinger equation. Here, we suppose that $A:\R^N\times\R\rightarrow\R$ is a $\mathcal{C}^{1}$--Caratheodory function such that $A_t(x,t) = \frac{\partial A}{\partial t} (x,t)$ and a given Carath\'eodory function $g:\R^N\times\R\rightarrow\R$ has a subcritical growth and satisfies the Ambrosetti--Rabinowitz condition. Since the coefficient of the principal part depends also on the solution itself, we study the interaction of two different norms in a suitable Banach space so to obtain a "good" variational approach. Thus, by means of approximation arguments on bounded sets we can state the existence of a nontrivial weak bounded solution.File | Dimensione | Formato | |
---|---|---|---|
[85]-CSS_CalcVar_ReprintOnline2022.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
517.36 kB
Formato
Adobe PDF
|
517.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
[85]-CSalvatoreSportelli_postPrint.pdf
accesso aperto
Descrizione: Articolo in post-print
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
481.84 kB
Formato
Adobe PDF
|
481.84 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.