In this paper we establish a new existence result for the quasilinear elliptic problem \[ -{\rm div}(A(x,u)|\nabla u|^{p-2}\nabla u) +\frac1p A_t(x,u)|\nabla u|^p + V(x)|u|^{p-2} u = g(x,u)\quad\mbox{ in } \R^N, \] with $N\ge 2$, $p>1$ and $V:\R^N\to\R$ suitable measurable positive function, which generalizes the modified Schrödinger equation. Here, we suppose that $A:\R^N\times\R\rightarrow\R$ is a $\mathcal{C}^{1}$--Caratheodory function such that $A_t(x,t) = \frac{\partial A}{\partial t} (x,t)$ and a given Carath\'eodory function $g:\R^N\times\R\rightarrow\R$ has a subcritical growth and satisfies the Ambrosetti--Rabinowitz condition. Since the coefficient of the principal part depends also on the solution itself, we study the interaction of two different norms in a suitable Banach space so to obtain a "good" variational approach. Thus, by means of approximation arguments on bounded sets we can state the existence of a nontrivial weak bounded solution.

Bounded solutions for quasilinear modified Schrödinger equations

Anna Maria Candela;Addolorata Salvatore;Caterina Sportelli
2022-01-01

Abstract

In this paper we establish a new existence result for the quasilinear elliptic problem \[ -{\rm div}(A(x,u)|\nabla u|^{p-2}\nabla u) +\frac1p A_t(x,u)|\nabla u|^p + V(x)|u|^{p-2} u = g(x,u)\quad\mbox{ in } \R^N, \] with $N\ge 2$, $p>1$ and $V:\R^N\to\R$ suitable measurable positive function, which generalizes the modified Schrödinger equation. Here, we suppose that $A:\R^N\times\R\rightarrow\R$ is a $\mathcal{C}^{1}$--Caratheodory function such that $A_t(x,t) = \frac{\partial A}{\partial t} (x,t)$ and a given Carath\'eodory function $g:\R^N\times\R\rightarrow\R$ has a subcritical growth and satisfies the Ambrosetti--Rabinowitz condition. Since the coefficient of the principal part depends also on the solution itself, we study the interaction of two different norms in a suitable Banach space so to obtain a "good" variational approach. Thus, by means of approximation arguments on bounded sets we can state the existence of a nontrivial weak bounded solution.
File in questo prodotto:
File Dimensione Formato  
[85]-CSS_CalcVar_ReprintOnline2022.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 517.36 kB
Formato Adobe PDF
517.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
[85]-CSalvatoreSportelli_postPrint.pdf

accesso aperto

Descrizione: Articolo in post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 481.84 kB
Formato Adobe PDF
481.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/378772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact