In this paper, we find the critical exponent for the existence of global small data solutions to: [Formula presented]in the case of so-called non-effective damping, θ∈(σ,2σ], where σ≠1 and f=|u|α or f=|ut|α, in low space dimension. By critical exponent we mean that global small data solution exists for supercritical powers α>α̃ and do not exist, in general, for subcritical powers 1ᾱ, but we leave open to determine if a counterpart nonexistence result for α

The critical exponent for semilinear σ-evolution equations with a strong non-effective damping

D'Abbicco M.
;
2022-01-01

Abstract

In this paper, we find the critical exponent for the existence of global small data solutions to: [Formula presented]in the case of so-called non-effective damping, θ∈(σ,2σ], where σ≠1 and f=|u|α or f=|ut|α, in low space dimension. By critical exponent we mean that global small data solution exists for supercritical powers α>α̃ and do not exist, in general, for subcritical powers 1ᾱ, but we leave open to determine if a counterpart nonexistence result for α
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/378226
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact