epatitis C virus (HCV) is one of the leading causes of chronic liver disease, cirrhosis, and hepatocellular carcinoma, resulting in major global public health concerns. The HCV infection is unevenly distributed worldwide, with variations in prevalence across and within countries. The studies on molecular epidemiology conducted in several countries provide an essential supplement for a comprehensive knowledge of HCV epidemiology, genotypes, and subtypes, along with providing information on the impact of current and earlier migratory flows. HCV is phylogenetically classified into 8 major genotypes and 57 subtypes. HCV genotype and subtype distribution differ according to geographic origin and transmission risk category. Unless people with HCV infection are detected and treated appropriately, the number of deaths due to the disease will continue to increase. In 2015, 1.75 million new viral infections were mostly due to unsafe healthcare procedures and drug use injections. In the same year, access to direct-acting antivirals was challenging and varied in developing and developed countries, affecting HCV cure rates based on their availability. The World Health Assembly, in 2016, approved a global strategy to achieve the elimination of the HCV public health threat by 2030 (by reducing new infections by 90% and deaths by 65%). Globally, countries are implementing policies and measures to eliminate HCV risk based on their distribution of genotypes and prevalence.

Worldwide prevalence, genotype distribution and management of hepatitis C

Solimando, A. G.;Shahini, E
2021-01-01

Abstract

epatitis C virus (HCV) is one of the leading causes of chronic liver disease, cirrhosis, and hepatocellular carcinoma, resulting in major global public health concerns. The HCV infection is unevenly distributed worldwide, with variations in prevalence across and within countries. The studies on molecular epidemiology conducted in several countries provide an essential supplement for a comprehensive knowledge of HCV epidemiology, genotypes, and subtypes, along with providing information on the impact of current and earlier migratory flows. HCV is phylogenetically classified into 8 major genotypes and 57 subtypes. HCV genotype and subtype distribution differ according to geographic origin and transmission risk category. Unless people with HCV infection are detected and treated appropriately, the number of deaths due to the disease will continue to increase. In 2015, 1.75 million new viral infections were mostly due to unsafe healthcare procedures and drug use injections. In the same year, access to direct-acting antivirals was challenging and varied in developing and developed countries, affecting HCV cure rates based on their availability. The World Health Assembly, in 2016, approved a global strategy to achieve the elimination of the HCV public health threat by 2030 (by reducing new infections by 90% and deaths by 65%). Globally, countries are implementing policies and measures to eliminate HCV risk based on their distribution of genotypes and prevalence.
File in questo prodotto:
File Dimensione Formato  
WORLDWIDE.pdf

non disponibili

Descrizione: articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Non specificato
Dimensione 980 kB
Formato Adobe PDF
980 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/377937
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact