Metal-based drugs can modulate various biological processes and exhibit a rich variety of properties that foster their use in biomedicine and chemical biology. On the way to intracellular targets, ligand exchange and redox reactions can take place, thus making metallodrug speciation in vivo a challenging task. Advances in NMR spectroscopy have made it possible to move from solution to live-cell studies and elucidate the transport of metallodrugs and interactions with macromolecular targets in a physiological setting. In turn, the electronic properties and supramolecular chemistry of metal complexes can be exploited to characterize drug delivery nanosystems by NMR. The recent evolution of in-cell NMR methodology is presented with special emphasis on metal-related processes. Applications to paradigmatic cases of platinum and gold drugs are highlighted.
NMR spectroscopy to study the fate of metallodrugs in cells
Arnesano F.
2021-01-01
Abstract
Metal-based drugs can modulate various biological processes and exhibit a rich variety of properties that foster their use in biomedicine and chemical biology. On the way to intracellular targets, ligand exchange and redox reactions can take place, thus making metallodrug speciation in vivo a challenging task. Advances in NMR spectroscopy have made it possible to move from solution to live-cell studies and elucidate the transport of metallodrugs and interactions with macromolecular targets in a physiological setting. In turn, the electronic properties and supramolecular chemistry of metal complexes can be exploited to characterize drug delivery nanosystems by NMR. The recent evolution of in-cell NMR methodology is presented with special emphasis on metal-related processes. Applications to paradigmatic cases of platinum and gold drugs are highlighted.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.