The analysis of network traffic plays a crucial role in modern organizations since it can provide defense mechanisms against cyberattacks. In this context, machine learning algorithms can be fruitfully adopted to identify malicious patterns in network sessions. However, they cannot be directly applied to a raw data representation of network traffic. An active thread of research focuses on the design and implementation of feature extraction techniques that aim at mapping raw data representations of network traffic sessions to a new representation that can be processed by machine learning algorithms.
Feature extraction based on word embedding models for intrusion detection in network traffic
Corizzo, Roberto
;
2020-01-01
Abstract
The analysis of network traffic plays a crucial role in modern organizations since it can provide defense mechanisms against cyberattacks. In this context, machine learning algorithms can be fruitfully adopted to identify malicious patterns in network sessions. However, they cannot be directly applied to a raw data representation of network traffic. An active thread of research focuses on the design and implementation of feature extraction techniques that aim at mapping raw data representations of network traffic sessions to a new representation that can be processed by machine learning algorithms.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.