The realization of cross talks between transposable elements of class I and their host genome involves non-histonic chromatin proteins. These interactions have been widely analyzed through the characterization of the gypsy retrotransposon leader region, which holds a particularly strong insulator element, and the proteins required for its function, Su(Hw), Mod(mdg4), and Cp190. Here we provide evidence that a similar interaction should occur between ZAM, a gypsy-like element, and HP1, one of the most extensively studied chromatin proteins. We first assayed the existence of this binding using the yeast cells one-hybrid system and then we verified it in vivo by ChIP assay. In order to characterize the interaction between HP1 and the ZAM 5 ′ untranslated region we performed a series of gel shift analyses. Our observations confirm an HP1 co-operative DNA-binding and display for the first time the HP1 DNA target motif that, we hypothesize, should be one of its nucleation sites.
The realization of cross talks between transposable elements of class I and their host genome involves non-histonic chromatin proteins. These interactions have been widely analyzed through the characterization of the gypsy retrotransposon leader region, which holds a particularly strong insulator element, and the proteins required for its function, Su(Hw), Mod(mdg4), and Cp190. Here we provide evidence that a similar interaction should occur between ZAM, a gypsy-like element, and HP1, one of the most extensively studied chromatin proteins. We first assayed the existence of this binding using the yeast cells one-hybrid system and then we verified it in vivo by ChIP assay. In order to characterize the interaction between HP1 and the ZAM 5′ untranslated region we performed a series of gel shift analyses. Our observations confirm an HP1 co-operative DNA-binding and display for the first time the HP1 DNA target motif that, we hypothesize, should be one of its nucleation sites. © 2007 Elsevier B.V. All rights reserved.
Heterochromatin protein 1 interacts with 5′UTR of transposable element ZAM in a sequence-specific fashion
Minervini C. F.;Marsano R. M.;Casieri P.;Fanti L.;Caizzi R.;Pimpinelli S.;Rocchi M.;Viggiano L.
2007-01-01
Abstract
The realization of cross talks between transposable elements of class I and their host genome involves non-histonic chromatin proteins. These interactions have been widely analyzed through the characterization of the gypsy retrotransposon leader region, which holds a particularly strong insulator element, and the proteins required for its function, Su(Hw), Mod(mdg4), and Cp190. Here we provide evidence that a similar interaction should occur between ZAM, a gypsy-like element, and HP1, one of the most extensively studied chromatin proteins. We first assayed the existence of this binding using the yeast cells one-hybrid system and then we verified it in vivo by ChIP assay. In order to characterize the interaction between HP1 and the ZAM 5′ untranslated region we performed a series of gel shift analyses. Our observations confirm an HP1 co-operative DNA-binding and display for the first time the HP1 DNA target motif that, we hypothesize, should be one of its nucleation sites. © 2007 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.