The linearized dynamical equation for metric perturbations in a fully general, non-vacuum, background geometry is obtained from the Hamilton variational principle applied to the action up to second order. We specialize our results to the case of traceless and transverse metric fluctuations, and we discuss how the intrinsic properties of the matter stress tensor can affect (and modify) the process of gravity wave propagation even in most conventional geometric scenarios, like (for instance) those described by a FLRW metric background. We provide explicit examples for fluid, scalar field and electromagnetic field sources.

Linearized propagation equations for metric fluctuations in a general (non-vacuum) background geometry

Gasperini, M.
;
Tedesco, L.
2021-01-01

Abstract

The linearized dynamical equation for metric perturbations in a fully general, non-vacuum, background geometry is obtained from the Hamilton variational principle applied to the action up to second order. We specialize our results to the case of traceless and transverse metric fluctuations, and we discuss how the intrinsic properties of the matter stress tensor can affect (and modify) the process of gravity wave propagation even in most conventional geometric scenarios, like (for instance) those described by a FLRW metric background. We provide explicit examples for fluid, scalar field and electromagnetic field sources.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/370406
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact