Studying, understanding and exploiting the content of a digital library, and extracting useful information thereof, require automatic techniques that can effectively support the users. To this aim, a relevant role can be played by concept taxonomies. Unfortunately, the availability of such a kind of resources is limited, and their manual building and maintenance are costly and error-prone. This work presents ConNeKTion, a tool for conceptual graph learning and exploitation. It allows to learn conceptual graphs from plain text and to enrich them by finding concept generalizations. The resulting graph can be used for several purposes: finding relationships between concepts (if any), filtering the concepts from a particular perspective, extracting keyword, retrieving information and identifying the author. ConNeKTion provides also a suitable control panel, to comfortably carry out these activities.

ConNeKTion: A Tool for Handling Conceptual Graphs Automatically Extracted from Text

FERILLI, Stefano;
2014-01-01

Abstract

Studying, understanding and exploiting the content of a digital library, and extracting useful information thereof, require automatic techniques that can effectively support the users. To this aim, a relevant role can be played by concept taxonomies. Unfortunately, the availability of such a kind of resources is limited, and their manual building and maintenance are costly and error-prone. This work presents ConNeKTion, a tool for conceptual graph learning and exploitation. It allows to learn conceptual graphs from plain text and to enrich them by finding concept generalizations. The resulting graph can be used for several purposes: finding relationships between concepts (if any), filtering the concepts from a particular perspective, extracting keyword, retrieving information and identifying the author. ConNeKTion provides also a suitable control panel, to comfortably carry out these activities.
2014
978-3-642-54346-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/36923
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 0
social impact