This paper discusses some properties of solutions to fractional neutral delay differential equations. By combining a new weighted norm, the Banach fixed point theorem and an elegant technique for extending solutions, results on existence, uniqueness, and growth rate of global solutions under a mild Lipschitz continuous condition of the vector field are first established. Be means of the Laplace transform the solution of some delay fractional neutral differential equations are derived in terms of three-parameter Mittag–Leffler functions; their stability properties are hence studied by using use Rouché’s theorem to describe the position of poles of the characteristic polynomials and the final value theorem to detect the asymptotic behavior. By means of numerical simulations the theoretical findings on the asymptotic behavior are verified.

An analysis of solutions to fractional neutral differential equations with delay

Garrappa R.
2021-01-01

Abstract

This paper discusses some properties of solutions to fractional neutral delay differential equations. By combining a new weighted norm, the Banach fixed point theorem and an elegant technique for extending solutions, results on existence, uniqueness, and growth rate of global solutions under a mild Lipschitz continuous condition of the vector field are first established. Be means of the Laplace transform the solution of some delay fractional neutral differential equations are derived in terms of three-parameter Mittag–Leffler functions; their stability properties are hence studied by using use Rouché’s theorem to describe the position of poles of the characteristic polynomials and the final value theorem to detect the asymptotic behavior. By means of numerical simulations the theoretical findings on the asymptotic behavior are verified.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/367850
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact