The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), which is believed to have originated in China towards the end of November 2019, has now spread across the globe, causing a pandemic in 192 countries. The World Health Organization has called it the SARS-CoV-2 pandemic. Rapid dissemination of the virus occurs mainly through the saliva (Flügge’s droplets) and aerosol, together with nasal and lachrymal passages. The literature associated with the recent advancement in terms of rapid diagnostics and SARS-CoV-2 vaccines has thoroughly studied the role of ACE2 receptors and Furin, as well as viral agent access into the host cell and its significant persistence at the level of the oral mucosa, which represents the main access to the virus. The purpose of this review was to underline the processes of SARS-CoV-2 infection mechanisms and novel breakthroughs in diagnostics and vaccines. Different technologies, such as the RT-PCR molecular test and the antigenic test, have been developed to identify subjects affected by the SARS-CoV-2 in order to improve the tracking of infection geographical diffusion. Novel rapid and highly sensitive diagnostic tests has been proposed for the detection of SARS-CoV-2 to improve the screening capability of suspected contagions. The strengthening of the vaccination campaign represents the most effective means to combat the SARS-CoV-2 infection and prevent severe manifestations of the virus—different classes of vaccines have been developed for this purpose. Further attention on the novel SARS-CoV-2 variant is necessary in order to verify the protection efficacy and virulence reduction of the infective agent in the recent vaccine campaign.

SARS-CoV-2 Disease through Viral Genomic and Receptor Implications: An Overview of Diagnostic and Immunology Breakthroughs

Luigi Santacroce;Andrea Ballini;Francesco Inchingolo;Gianna Dipalma
2021-01-01

Abstract

The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), which is believed to have originated in China towards the end of November 2019, has now spread across the globe, causing a pandemic in 192 countries. The World Health Organization has called it the SARS-CoV-2 pandemic. Rapid dissemination of the virus occurs mainly through the saliva (Flügge’s droplets) and aerosol, together with nasal and lachrymal passages. The literature associated with the recent advancement in terms of rapid diagnostics and SARS-CoV-2 vaccines has thoroughly studied the role of ACE2 receptors and Furin, as well as viral agent access into the host cell and its significant persistence at the level of the oral mucosa, which represents the main access to the virus. The purpose of this review was to underline the processes of SARS-CoV-2 infection mechanisms and novel breakthroughs in diagnostics and vaccines. Different technologies, such as the RT-PCR molecular test and the antigenic test, have been developed to identify subjects affected by the SARS-CoV-2 in order to improve the tracking of infection geographical diffusion. Novel rapid and highly sensitive diagnostic tests has been proposed for the detection of SARS-CoV-2 to improve the screening capability of suspected contagions. The strengthening of the vaccination campaign represents the most effective means to combat the SARS-CoV-2 infection and prevent severe manifestations of the virus—different classes of vaccines have been developed for this purpose. Further attention on the novel SARS-CoV-2 variant is necessary in order to verify the protection efficacy and virulence reduction of the infective agent in the recent vaccine campaign.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/366505
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 26
social impact