This paper provides an overview of some of the most relevant deep learning approaches to pattern extraction and recognition in visual arts, particularly painting and drawing. Recent advances in deep learning and computer vision, coupled with the growing availability of large digitized visual art collections, have opened new opportunities for computer science researchers to assist the art community with automatic tools to analyse and further understand visual arts. Among other benefits, a deeper understanding of visual arts has the potential to make them more accessible to a wider population, ultimately supporting the spread of culture.

Deep learning approaches to pattern extraction and recognition in paintings and drawings: an overview

Castellano, Giovanna;Vessio, Gennaro
2021-01-01

Abstract

This paper provides an overview of some of the most relevant deep learning approaches to pattern extraction and recognition in visual arts, particularly painting and drawing. Recent advances in deep learning and computer vision, coupled with the growing availability of large digitized visual art collections, have opened new opportunities for computer science researchers to assist the art community with automatic tools to analyse and further understand visual arts. Among other benefits, a deeper understanding of visual arts has the potential to make them more accessible to a wider population, ultimately supporting the spread of culture.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/365909
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 39
social impact