This paper provides an overview of some of the most relevant deep learning approaches to pattern extraction and recognition in visual arts, particularly painting and drawing. Recent advances in deep learning and computer vision, coupled with the growing availability of large digitized visual art collections, have opened new opportunities for computer science researchers to assist the art community with automatic tools to analyse and further understand visual arts. Among other benefits, a deeper understanding of visual arts has the potential to make them more accessible to a wider population, ultimately supporting the spread of culture.

Deep learning approaches to pattern extraction and recognition in paintings and drawings: an overview

Castellano, Giovanna;Vessio, Gennaro
2021-01-01

Abstract

This paper provides an overview of some of the most relevant deep learning approaches to pattern extraction and recognition in visual arts, particularly painting and drawing. Recent advances in deep learning and computer vision, coupled with the growing availability of large digitized visual art collections, have opened new opportunities for computer science researchers to assist the art community with automatic tools to analyse and further understand visual arts. Among other benefits, a deeper understanding of visual arts has the potential to make them more accessible to a wider population, ultimately supporting the spread of culture.
File in questo prodotto:
File Dimensione Formato  
2021_NCAA.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/365909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 49
social impact