Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Background Up-to-date evidence on levels and trends for age-sex-specific all-cause and cause-specific mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries. Methods We estimated age-sex-specific all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specific causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions. Findings Global life expectancy for both sexes increased from 65·3 years (UI 65·0-65·6) in 1990, to 71·5 years (UI 71·0-71·9) in 2013, while the number of deaths increased from 47·5 million (UI 46·8-48·2) to 54·9 million (UI 53·6-56·3) over the same interval. Global progress masked variation by age and sex: for children, average absolute differences between countries decreased but relative differences increased. For women aged 25-39 years and older than 75 years and for men aged 20-49 years and 65 years and older, both absolute and relative differences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10·7%, from 4·3 million deaths in 1990 to 4·8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100 000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions. Interpretation For most countries, the general pattern of reductions in age-sex specific mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade. Funding Bill & Melinda Gates Foundation.
Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013
Naghavi M.;Wang H.;Lozano R.;Davis A.;Liang X.;Zhou M.;Vollset S. E.;Abbasoglu Ozgoren A.;Abdalla S.;Abd-Allah F.;Abdel Aziz M. I.;Abera S. F.;Aboyans V.;Abraham B.;Abraham J. P.;Abuabara K. E.;Abubakar I.;Abu-Raddad L. J.;Abu-Rmeileh N. M. E.;Achoki T.;Adelekan A.;Ademi Z.;Adofo K.;Adou A. K.;Adsuar J. C.;Arnlov J.;Agardh E. E.;Akena D.;Al Khabouri M. J.;Alasfoor D.;Albittar M.;Alegretti M. A.;Aleman A. V.;Alemu Z. A.;Alfonso-Cristancho R.;Alhabib S.;Ali M. K.;Ali R.;Alla F.;Al Lami F.;Allebeck P.;AlMazroa M. A.;Al-Shahi Salman R.;Alsharif U.;Alvarez E.;Alviz-Guzman N.;Amankwaa A. A.;Amare A. T.;Ameli O.;Amini H.;Ammar W.;Anderson H. R.;Anderson B. O.;Antonio C. A. T.;Anwari P.;Apfel H.;Argeseanu Cunningham S.;Arsic Arsenijevic V. S.;Artaman A.;Asad M. M.;Asghar R. J.;Assadi R.;Atkins L. S.;Atkinson C.;Badawi A.;Bahit M. C.;Bakfalouni T.;Balakrishnan K.;Balalla S.;Banerjee A.;Barber R. M.;Barker-Collo S. L.;Barquera S.;Barregard L.;Barrero L. H.;Barrientos-Gutierrez T.;Basu A.;Basu S.;Basulaiman M. O.;Beardsley J.;Bedi N.;Beghi E.;Bekele T.;Bell M. L.;Benjet C.;Bennett D. A.;Bensenor I. M.;Benzian H.;Bertozzi-Villa A.;Beyene T. J.;Bhala N.;Bhalla A.;Bhutta Z. A.;Bikbov B.;Bin Abdulhak A.;Biryukov S.;Blore J. D.;Blyth F. M.;Bohensky M. A.;Borges G.;Bose D.;Boufous S.;Bourne R. R.;Boyers L. N.;Brainin M.;Brauer M.;Brayne C. E. G.;Brazinova A.;Breitborde N.;Brenner H.;Briggs A. D. M.;Brown J. C.;Brugha T. S.;Buckle G. C.;Bui L. N.;Bukhman G.;Burch M.;Campos Nonato I. R.;Carabin H.;Cardenas R.;Carapetis J.;Carpenter D. O.;Caso V.;Castaneda-Orjuela C. A.;Castro R. E.;Catala-Lopez F.;Cavalleri F.;Chang J. -C.;Charlson F. C.;Che X.;Chen H.;Chen Y.;Chen J. S.;Chen Z.;Chiang P. P. -C.;Chimed-Ochir O.;Chowdhury R.;Christensen H.;Christophi C. A.;Chuang T. -W.;Chugh S. S.;Cirillo M.;Coates M. M.;Coffeng L. E.;Coggeshall M. S.;Cohen A.;Colistro V.;Colquhoun S. M.;Colomar M.;Cooper L. T.;Cooper C.;Coppola L. M.;Cortinovis M.;Courville K.;Cowie B. C.;Criqui M. H.;Crump J. A.;Cuevas-Nasu L.;Da Costa Leite I.;Dabhadkar K. C.;Dandona L.;Dandona R.;Dansereau E.;Dargan P. I.;Dayama A.;De La Cruz-Gongora V.;De La Vega S. F.;De Leo D.;Degenhardt L.;Del Pozo-Cruz B.;Dellavalle R. P.;Deribe K.;Des Jarlais D. C.;Dessalegn M.;De Veber G. A.;Dharmaratne S. D.;Dherani M.;Diaz-Ortega J. -L.;Diaz-Torne C.;Dicker D.;Ding E. L.;Dokova K.;Dorsey E. R.;Driscoll T. R.;Duan L.;Duber H. C.;Durrani A. M.;Ebel B. E.;Edmond K. M.;Ellenbogen R. G.;Elshrek Y.;Ermakov S. P.;Erskine H. E.;Eshrati B.;Esteghamati A.;Estep K.;Furst T.;Fahimi S.;Fahrion A. S.;Faraon E. J. A.;Farzadfar F.;Fay D. F. J.;Feigl A. B.;Feigin V. L.;Felicio M. M.;Fereshtehnejad S. -M.;Fernandes J. G.;Ferrari A. J.;Fleming T. D.;Foigt N.;Foreman K.;Forouzanfar M. H.;Fowkes F. G. R.;Fra Paleo U.;Franklin R. C.;Futran N. D.;Gaffikin L.;Gambashidze K.;Gankpe F. G.;Garcia-Guerra F. A.;Garcia A. C.;Geleijnse J. M.;Gessner B. D.;Gibney K. B.;Gillum R. F.;Gilmour S.;Ginawi I. A. M.;Giroud M.;Glaser E. L.;Goenka S.;Gomez Dantes H.;Gona P.;Gonzalez-Medina D.;Guinovart C.;Gupta R.;Gupta R.;Gosselin R. A.;Gotay C. C.;Goto A.;Gouda H. N.;Graetz N.;Greenwell K. F.;Gugnani H. C.;Gunnell D.;Gutierrez R. A.;Haagsma J.;Hafezi-Nejad N.;Hagan H.;Hagstromer M.;Halasa Y. A.;Hamadeh R. R.;Hamavid H.;Hammami M.;Hancock J.;Hankey G. J.;Hansen G. M.;Harb H. L.;Harewood H.;Haro J. M.;Havmoeller R.;Hay R. J.;Hay S. I.;Hedayati M. T.;Heredia Pi I. B.;Heuton K. R.;Heydarpour P.;Higashi H.;Hijar M.;Hoek H. W.;Hoffman H. J.;Hornberger J. C.;Hosgood H. D.;Hossain M.;Hotez P. J.;Hoy D. G.;Hsairi M.;Hu G.;Huang J. J.;Huffman M. D.;Hughes A. J.;Husseini A.;Huynh C.;Iannarone M.;Iburg K. M.;Idrisov B. T.;Ikeda N.;Innos K.;Inoue M.;Islami F.;Ismayilova S.;Jacobsen K. H.;Jassal S.;Jayaraman S. P.;Jensen P. N.;Jha V.;Jiang G.;Jiang Y.;Jonas J. B.;Joseph J.;Juel K.;Kabagambe E. K.;Kan H.;Karch A.;Karimkhani C.;Karthikeyan G.;Kassebaum N.;Kaul A.;Kawakami N.;Kazanjan K.;Kazi D. S.;Kemp A. H.;Kengne A. P.;Keren A.;Kereselidze M.;Khader Y. S.;Khalifa S. E. A. H.;Khan E. A.;Khan G.;Khang Y. -H.;Kieling C.;Kinfu Y.;Kinge J. M.;Kim D.;Kim S.;Kivipelto M.;Knibbs L.;Knudsen A. K.;Kokubo Y.;Kosen S.;Kotagal M.;Kravchenko M. A.;Krishnaswami S.;Krueger H.;Kuate Defo B.;Kuipers E. J.;Kucuk Bicer B.;Kulkarni C.;Kulkarni V. S.;Kumar K.;Kumar R. B.;Kwan G. F.;Kyu H.;Lai T.;Lakshmana Balaji A.;Lalloo R.;Lallukka T.;Lam H.;Lan Q.;Lansingh V. C.;Larson H. J.;Larsson A.;Lavados P. M.;Lawrynowicz A. E. B.;Leasher J. L.;Lee J. -T.;Leigh J.;Leinsalu M.;Leung R.;Levitz C.;Li B.;Li Y.;Li Y.;Liddell C.;Lim S. S.;De Lima G. M. F.;Lind M. L.;Lipshultz S. E.;Liu S.;Liu Y.;Lloyd B. K.;Lofgren K. T.;Logroscino G.;London S. J.;Lortet-Tieulent J.;Lotufo P. A.;Lucas R. M.;Lunevicius R.;Lyons R. A.;Ma S.;Machado V. M. P.;MacIntyre M. F.;Mackay M. T.;MacLachlan J. H.;Magis-Rodriguez C.;Mahdi A. A.;Majdan M.;Malekzadeh R.;Mangalam S.;Mapoma C. C.;Marape M.;Marcenes W.;Margono C.;Marks G. B.;Marzan M. B.;Masci J. R.;Mashal M. T.;Masiye F.;Mason-Jones A. J.;Matzopolous R.;Mayosi B. M.;Mazorodze T. T.;McGrath J. J.;McKay A. C.;McKee M.;McLain A.;Meaney P. A.;Mehndiratta M. M.;Mejia-Rodriguez F.;Melaku Y. A.;Meltzer M.;Memish Z. A.;Mendoza W.;Mensah G. A.;Meretoja A.;Mhimbira F. A.;Miller T. R.;Mills E. J.;Misganaw A.;Mishra S. K.;Mock C. N.;Moffitt T. E.;Mohamed Ibrahim N.;Mohammad K. A.;Mokdad A. H.;Mola G. L.;Monasta L.;Monis J. D. L. C.;Montanez Hernandez J. C.;Montico M.;Montine T. J.;Mooney M. D.;Moore A. R.;Moradi-Lakeh M.;Moran A. E.;Mori R.;Moschandreas J.;Moturi W. N.;Moyer M. L.;Mozaffarian D.;Mueller U. O.;Mukaigawara M.;Mullany E. C.;Murray J.;Mustapha A.;Naghavi P.;Naheed A.;Naidoo K. S.;Naldi L.;Nand D.;Nangia V.;Narayan K. M. V.;Nash D.;Nasher J.;Nejjari C.;Nelson R. G.;Neuhouser M.;Neupane S. P.;Newcomb P. A.;Newman L.;Newton C. R.;Ng M.;Ngalesoni F. N.;Nguyen G.;Nguyen N. T. T.;Nisar M. I.;Nolte S.;Norheim O. F.;Norman R. E.;Norrving B.;Nyakarahuka L.;Odell S.;O'Donnell M.;Ohkubo T.;Ohno S. L.;Olusanya B. O.;Omer S. B.;Opio J. N.;Orisakwe O. E.;Ortblad K. F.;Ortiz A.;Otayza M. L. K.;Pain A. W.;Pandian J. D.;Panelo C. I.;Panniyammakal J.;Papachristou C.;Paternina Caicedo A. J.;Patten S. B.;Patton G. C.;Paul V. K.;Pavlin B.;Pearce N.;Pellegrini C. A.;Pereira D. M.;Peresson S. C.;Perez-Padilla R.;Perez-Ruiz F. P.;Perico N.;Pervaiz A.;Pesudovs K.;Peterson C. B.;Petzold M.;Phillips B. K.;Phillips D. E.;Phillips M. R.;Plass D.;Piel F. B.;Poenaru D.;Polinder S.;Popova S.;Poulton R. G.;Pourmalek F.;Prabhakaran D.;Qato D.;Quezada A. D.;Quistberg D. A.;Rabito F.;Rafay A.;Rahimi K.;Rahimi-Movaghar V.;Rahman S. U. R.;Raju M.;Rakovac I.;Rana S. M.;Refaat A.;Remuzzi G.;Ribeiro A. L.;Ricci S.;Riccio P. M.;Richardson L.;Richardus J. H.;Roberts B.;Roberts D. A.;Robinson M.;Roca A.;Rodriguez A.;Rojas-Rueda D.;Ronfani L.;Room R.;Roth G. A.;Rothenbacher D.;Rothstein D. H.;Rowley J. T. F.;Roy N.;Ruhago G. M.;Rushton L.;Sambandam S.;Soreide K.;Saeedi M. Y.;Saha S.;Sahathevan R.;Sahraian M. A.;Sahle B. W.;Salomon J. A.;Salvo D.;Samonte G. M. J.;Sampson U.;Sanabria J. R.;Sandar L.;Santos I. S.;Satpathy M.;Sawhney M.;Saylan M.;Scarborough P.;Schottker B.;Schmidt J. C.;Schneider I. J. C.;Schumacher A. E.;Schwebel D. C.;Scott J. G.;Sepanlou S. G.;Servan-Mori E. E.;Shackelford K.;Shaheen A.;Shahraz S.;Shakh-Nazarova M.;Shangguan S.;She J.;Sheikhbahaei S.;Shepard D. S.;Shibuya K.;Shinohara Y.;Shishani K.;Shiue I.;Shivakoti R.;Shrime M. G.;Sigfusdottir I. D.;Silberberg D. H.;Silva A. P.;Simard E. P.;Sindi S.;Singh J. A.;Singh L.;Sioson E.;Skirbekk V.;Sliwa K.;So S.;Soljak M.;Soneji S.;Soshnikov S. S.;Sposato L. A.;Sreeramareddy C. T.;Stanaway J. D.;Stathopoulou V. K.;Steenland K.;Stein C.;Steiner C.;Stevens A.;Stockl H.;Straif K.;Stroumpoulis K.;Sturua L.;Sunguya B. F.;Swaminathan S.;Swaroop M.;Sykes B. L.;Tabb K. M.;Takahashi K.;Talongwa R. T.;Tan F.;Tanne D.;Tanner M.;Tavakkoli M.;Te Ao B.;Teixeira C. M.;Templin T.;Tenkorang E. Y.;Terkawi A. S.;Thomas B. A.;Thorne-Lyman A. L.;Thrift A. G.;Thurston G. D.;Tillmann T.;Tirschwell D. L.;Tleyjeh I. M.;Tonelli M.;Topouzis F.;Towbin J. A.;Toyoshima H.;Traebert J.;Tran B. X.;Truelsen T.;Trujillo U.;Trillini M.;Tsala Dimbuene Z.;Tsilimbaris M.;Tuzcu E. M.;Ubeda C.;Uchendu U. S.;Ukwaja K. N.;Undurraga E. A.;Vallely A. J.;Van De Vijver S.;Van Gool C. H.;Varakin Y. Y.;Vasankari T. J.;Vasconcelos A. M. N.;Vavilala M. S.;Venketasubramanian N.;Vijayakumar L.;Villalpando S.;Violante F. S.;Vlassov V. V.;Wagner G. R.;Waller S. G.;Wang J. L.;Wang L.;Wang X.;Wang Y.;Warouw T. S.;Weichenthal S.;Weiderpass E.;Weintraub R. G.;Wenzhi W.;Werdecker A.;Wessells K. R. R.;Westerman R.;Whiteford H. A.;Wilkinson J. D.;Williams T. N.;Woldeyohannes S. M.;Wolfe C. D. A.;Wolock T. M.;Woolf A. D.;Wong J. Q.;Wright J. L.;Wulf S.;Wurtz B.;Xu G.;Yang Y. C.;Yano Y.;Yatsuya H.;Yip P.;Yonemoto N.;Yoon S. -J.;Younis M.;Yu C.;Yun Jin K.;Zaki M. E. S.;Zamakhshary M. F.;Zeeb H.;Zhang Y.;Zhao Y.;Zheng Y.;Zhu J.;Zhu S.;Zonies D.;Zou X. N.;Zunt J. R.;Vos T.;Lopez A. D.;Murray C. J. L.;Alcala-Cerra G.;Hu H.;Karam N.;Sabin N.;Temesgen A. M.
2015-01-01
Abstract
Background Up-to-date evidence on levels and trends for age-sex-specific all-cause and cause-specific mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries. Methods We estimated age-sex-specific all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specific causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions. Findings Global life expectancy for both sexes increased from 65·3 years (UI 65·0-65·6) in 1990, to 71·5 years (UI 71·0-71·9) in 2013, while the number of deaths increased from 47·5 million (UI 46·8-48·2) to 54·9 million (UI 53·6-56·3) over the same interval. Global progress masked variation by age and sex: for children, average absolute differences between countries decreased but relative differences increased. For women aged 25-39 years and older than 75 years and for men aged 20-49 years and 65 years and older, both absolute and relative differences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10·7%, from 4·3 million deaths in 1990 to 4·8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100 000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions. Interpretation For most countries, the general pattern of reductions in age-sex specific mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade. Funding Bill & Melinda Gates Foundation.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/363427
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
2430
6043
5024
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.