We prove a multiplicity result for the inhomogeneous subelliptic problem (formula presented) is a sub-Laplacian on a Carnot group (formula presented) is the critical Sobolev exponent in this context, Ω is a bounded domain of G and f is small in a suitable sense. Precisely, we prove the existence of two distinct solutions, that are positive if f is. We adapt to the present subelliptic setting the well-known technique developed by Tarantello (Ann Inst H Poincarè Anal Non Linéaire 9:281–309, 1992).

A multiplicity result for a non-homogeneous subelliptic problem with Sobolev exponent

Loiudice A.
2020-01-01

Abstract

We prove a multiplicity result for the inhomogeneous subelliptic problem (formula presented) is a sub-Laplacian on a Carnot group (formula presented) is the critical Sobolev exponent in this context, Ω is a bounded domain of G and f is small in a suitable sense. Precisely, we prove the existence of two distinct solutions, that are positive if f is. We adapt to the present subelliptic setting the well-known technique developed by Tarantello (Ann Inst H Poincarè Anal Non Linéaire 9:281–309, 1992).
2020
978-3-030-58214-2
978-3-030-58215-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/350037
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact