We demonstrated that quartz-enhanced photoacoustic spectroscopy (QEPAS) is an efficient tool to measure the vibrational relaxation rate of gas species, employing quartz tuning forks (QTFs) as sound detectors. Based on the dependence of the QTF resonance frequency on the resonator geometry, a wide range of acoustic frequencies with narrow detection bandwidth was probed. By measuring the QEPAS signal of the target analyte as well as the resonance properties of different QTFs as a function of the gas pressure, the relaxation time can be retrieved. This approach has been tested in the near infrared range by measuring the CH4 (nν4) vibrational relaxation rate in a mixture of 1% CH4, 0.15 % H2O in N2, and the H2O (ν1) relaxation rate in a mixture of 0.5 % H2O in N2. Relaxation times of 3.2 ms Torr and 0.25 ms Torr were estimated for CH4 and H2O, respectively, in excellent agreement with values reported in literature.

Quartz-enhanced photoacoustic spectroscopy exploiting low-frequency tuning forks as a tool to measure the vibrational relaxation rate in gas species

Dello Russo S.;Patimisco P.;
2021-01-01

Abstract

We demonstrated that quartz-enhanced photoacoustic spectroscopy (QEPAS) is an efficient tool to measure the vibrational relaxation rate of gas species, employing quartz tuning forks (QTFs) as sound detectors. Based on the dependence of the QTF resonance frequency on the resonator geometry, a wide range of acoustic frequencies with narrow detection bandwidth was probed. By measuring the QEPAS signal of the target analyte as well as the resonance properties of different QTFs as a function of the gas pressure, the relaxation time can be retrieved. This approach has been tested in the near infrared range by measuring the CH4 (nν4) vibrational relaxation rate in a mixture of 1% CH4, 0.15 % H2O in N2, and the H2O (ν1) relaxation rate in a mixture of 0.5 % H2O in N2. Relaxation times of 3.2 ms Torr and 0.25 ms Torr were estimated for CH4 and H2O, respectively, in excellent agreement with values reported in literature.
File in questo prodotto:
File Dimensione Formato  
124_Relaxation-rate-_photoacoustics_2020.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.09 MB
Formato Adobe PDF
3.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/349746
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 59
social impact